Browsing by Author "Alexander, Trevor W"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Erratum to: The nasopharyngeal microbiota of beef cattle before and after transport to a feedlot(2017-04-20) Holman, Devin B; Timsit, Edouard; Amat, Samat; Abbott, D. W; Buret, Andre G; Alexander, Trevor WItem Open Access The nasopharyngeal microbiota of beef cattle before and after transport to a feedlot(2017-03-22) Holman, Devin B; Timsit, Edouard; Amat, Samat; Abbott, D. W; Buret, Andre G; Alexander, Trevor WAbstract Background The nasopharyngeal (NP) microbiota plays an important role in bovine health, comprising a rich and diverse microbial community. The nasopharynx is also the niche for potentially pathogenic agents which are associated with bovine respiratory disease (BRD), a serious and costly illness in feedlot cattle. We used 14 beef heifers from a closed and disease-free herd to assess the dynamics of the NP microbiota of cattle that are transported to a feedlot. Cattle were sampled prior to transport to the feedlot (day 0) and at days 2, 7, and 14. Results The structure of the NP microbiota changed significantly over the course of the study, with the largest shift occurring between day 0 (prior to transport) and day 2 (P < 0.001). Phylogenetic diversity and richness increased following feedlot placement (day 2; P < 0.05). The genera Pasteurella, Bacillus, and Proteus were enriched at day 0, Streptococcus and Acinetobacter at day 2, Bifidobacterium at day 7, and Mycoplasma at day 14. The functional potential of the NP microbiota was assessed using PICRUSt, revealing that replication and repair, as well as translation pathways, were more relatively abundant in day 14 samples. These differences were driven mostly by Mycoplasma. Although eight cattle were culture-positive for the BRD-associated bacterium Pasteurella multocida at one or more sampling times, none were culture-positive for Mannheimia haemolytica or Histophilus somni. Conclusions This study investigated the effect that feedlot placement has on the NP microbiota of beef cattle over a 14-d period. Within two days of transport to the feedlot, the NP microbiota changed significantly, increasing in both phylogenetic diversity and richness. These results demonstrate that there is an abrupt shift in the NP microbiota of cattle after transportation to a feedlot. This may have importance for understanding why cattle are most susceptible to BRD after feedlot placement.Item Open Access Topography of the respiratory tract bacterial microbiota in cattle(2020-06-10) McMullen, Christopher; Alexander, Trevor W; Léguillette, Renaud; Workentine, Matthew; Timsit, EdouardAbstract Background Bacterial bronchopneumonia (BP) is the leading cause of morbidity and mortality in cattle. The nasopharynx is generally accepted as the primary source of pathogenic bacteria that cause BP. However, it has recently been shown in humans that the oropharynx may act as the primary reservoir for pathogens that reach the lung. The objective was therefore to describe the bacterial microbiota present along the entire cattle respiratory tract to determine which upper respiratory tract (URT) niches may contribute the most to the composition of the lung microbiota. Methods Seventeen upper and lower respiratory tract locations were sampled from 15 healthy feedlot steer calves. Samples were collected using a combination of swabs, protected specimen brushes, and saline washes. DNA was extracted from each sample and the 16S rRNA gene (V3-V4) was sequenced. Community composition, alpha-diversity, and beta-diversity were compared among sampling locations. Results Microbiota composition differed across sampling locations, with physiologically and anatomically distinct locations showing different relative abundances of 1137 observed sequence variants (SVs). An analysis of similarities showed that the lung was more similar to the nasopharynx (R-statistic = 0.091) than it was to the oropharynx (R-statistic = 0.709) or any other URT sampling location. Five distinct metacommunities were identified across all samples after clustering at the genus level using Dirichlet multinomial mixtures. This included a metacommunity found primarily in the lung and nasopharynx that was dominated by Mycoplasma. Further clustering at the SV level showed a shared metacommunity between the lung and nasopharynx that was dominated by Mycoplasma dispar. Other metacommunities found in the nostrils, tonsils, and oral microbiotas were dominated by Moraxella, Fusobacterium, and Streptococcus, respectively. Conclusions The nasopharyngeal bacterial microbiota is most similar to the lung bacterial microbiota in healthy cattle and therefore may serve as the primary source of bacteria to the lung. This finding indicates that the nasopharynx is likely the most important location that should be targeted when doing bovine respiratory microbiota research. Video abstract.