Browsing by Author "Assad, Faisal V."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Principal component analysis of summertime ground site measurements in the Athabasca oil sands with a focus on analytically unresolved intermediate-volatility organic compounds(European Geosciences Union, 2018-12-14) Tokarek, Travis W.; Odame-Ankrah, Charles A.; Huo, Jennifer A.; McLaren, Robert; Lee, Alex K. Y.; Adam, Max G.; Willis, Megan D.; Abbatt, Jonathan P. D.; Mihele, Cristian; Darlington, Andrea; Mittermeier, Richard L.; Strawbridge, Kevin; Hayden, Katherine L.; Olfert, Jason S.; Schnitzler, Elijah G.; Brownsey, Duncan K.; Assad, Faisal V.; Wentworth, Gregory R.; Tevlin, Alex G.; Worthy, Douglas E. J.; Li, Shao-Meng; Liggio, John; Brook, Jeffrey R.; Osthoff, Hans D.In this paper, measurements of air pollutants made at a ground site near Fort McKay in the Athabasca oil sands region as part of a multi-platform campaign in the summer of 2013 are presented. The observations included measurements of selected volatile organic compounds (VOCs) by a gas chromatograph–ion trap mass spectrometer (GC-ITMS). This instrument observed a large, analytically unresolved hydrocarbon peak (with a retention index between 1100 and 1700) associated with intermediate-volatility organic compounds (IVOCs). However, the activities or processes that contribute to the release of these IVOCs in the oil sands region remain unclear. Principal component analysis (PCA) with varimax rotation was applied to elucidate major source types impacting the sampling site in the summer of 2013. The analysis included 28 variables, including concentrations of total odd nitrogen (NOy), carbon dioxide (CO2), methane (CH4), ammonia (NH3), carbon monoxide (CO), sulfur dioxide (SO2), total reduced-sulfur compounds (TRSs), speciated monoterpenes (including α- and β-pinene and limonene), particle volume calculated from measured size distributions of particles less than 10 and 1 µm in diameter (PM10−1 and PM1), particle-surface-bound polycyclic aromatic hydrocarbons (pPAHs), and aerosol mass spectrometer composition measurements, including refractory black carbon (rBC) and organic aerosol components. The PCA was complemented by bivariate polar plots showing the joint wind speed and direction dependence of air pollutant concentrations to illustrate the spatial distribution of sources in the area. Using the 95 % cumulative percentage of variance criterion, 10 components were identified and categorized by source type. These included emissions by wet tailing ponds, vegetation, open pit mining operations, upgrader facilities, and surface dust. Three components correlated with IVOCs, with the largest associated with surface mining and likely caused by the unearthing and processing of raw bitumen.Item Open Access Quantification of peroxynitric acid and peroxyacyl nitrates using an ethane-based thermal dissociation peroxy radical chemical amplification cavity ring-down spectrometer(European Geosciences Union, 2018-07-17) Taha, Youssef M.; Saowapon, Matthew T.; Assad, Faisal V.; Ye, Connie Z.; Chen, Xining; Garner, Natasha M.; Osthoff, Hans D.Peroxy and peroxyacyl nitrates (PNs and PANs) are important trace gas constituents of the troposphere which are challenging to quantify by differential thermal dissociation with NO2 detection in polluted (i.e., high-NOx) environments. In this paper, a thermal dissociation peroxy radical chemical amplification cavity ring-down spectrometer (TD-PERCA-CRDS) for sensitive and selective quantification of total peroxynitrates (ΣPN = ΣRO2NO2) and of total peroxyacyl nitrates (ΣPAN = ΣRC(O)O2NO2) is described. The instrument features multiple detection channels to monitor the NO2 background and the ROx ( = HO2 + RO2 + ΣRO2) radicals generated by TD of ΣPN and/or ΣPAN. Chemical amplification is achieved through the addition of 0.6 ppm NO and 1.6 % C2H6 to the inlet. The instrument's performance was evaluated using peroxynitric acid (PNA) and peroxyacetic or peroxypropionic nitric anhydride (PAN or PPN) as representative examples of ΣPN and ΣPAN, respectively, whose abundances were verified by iodide chemical ionization mass spectrometry (CIMS). The amplification factor or chain length increases with temperature up to 69 ± 5 and decreases with analyte concentration and relative humidity (RH). At inlet temperatures above 120 and 250 °C, respectively, PNA and ΣPAN fully dissociated, though their TD profiles partially overlap. Furthermore, interference from ozone (O3) was observed at temperatures above 150 °C, rationalized by its partial dissociation to O atoms which react with C2H6 to form C2H5 and OH radicals. Quantification of PNA and ΣPAN in laboratory-generated mixtures containing O3 was achieved by simultaneously monitoring the TD-PERCA responses in multiple parallel CRDS channels set to different temperatures in the 60 to 130 °C range. The (1 s, 2σ) limit of detection (LOD) of TD-PERCA-CRDS is 6.8 pptv for PNA and 2.6 pptv for ΣPAN and significantly lower than TD-CRDS without chemical amplification. The feasibility of TD-PERCA-CRDS for ambient air measurements is discussed.Item Open Access Quantification of peroxynitric acid and peroxyacyl nitrates using an ethane-based thermal dissociation peroxy radical chemical amplification cavity ring-down spectrometer(Copernicus, 2018-07-17) Taha, Youssef M.; Saowapon, Matthew T.; Assad, Faisal V.; Ye, Connie Z.; Chen, Xining; Garner, Natasha M.; Osthoff, Hans D.Peroxy and peroxyacyl nitrates (PNs and PANs) are important trace gas constituents of the troposphere which are challenging to quantify by differential thermal dissociation with NO2 detection in polluted (i.e., high-NOx) environments. In this paper, a thermal dissociation peroxy radical chemical amplification cavity ring-down spectrometer (TD-PERCA-CRDS) for sensitive and selective quantification of total peroxynitrates (ΣPN = ΣRO2NO2) and of total peroxyacyl nitrates (ΣPAN = ΣRC(O)O2NO2) is described. The instrument features multiple detection channels to monitor the NO2 background and the ROx ( = HO2+RO2+ΣRO2) radicals generated by TD of ΣPN and/or ΣPAN. Chemical amplification is achieved through the addition of 0.6ppm NO and 1.6% C2H6 to the inlet. The instrument's performance was evaluated using peroxynitric acid (PNA) and peroxyacetic or peroxypropionic nitric anhydride (PAN or PPN) as representative examples of ΣPN and ΣPAN, respectively, whose abundances were verified by iodide chemical ionization mass spectrometry (CIMS). The amplification factor or chain length increases with temperature up to 69±5 and decreases with analyte concentration and relative humidity (RH). At inlet temperatures above 120 and 250°C, respectively, PNA and ΣPAN fully dissociated, though their TD profiles partially overlap. Furthermore, interference from ozone (O3) was observed at temperatures above 150°C, rationalized by its partial dissociation to O atoms which react with C2H6 to form C2H5 and OH radicals. Quantification of PNA and ΣPAN in laboratory-generated mixtures containing O3 was achieved by simultaneously monitoring the TD-PERCA responses in multiple parallel CRDS channels set to different temperatures in the 60 to 130°C range. The (1s, 2σ) limit of detection (LOD) of TD-PERCA-CRDS is 6.8pptv for PNA and 2.6pptv for ΣPAN and significantly lower than TD-CRDS without chemical amplification. The feasibility of TD-PERCA-CRDS for ambient air measurements is discussed.