Browsing by Author "Borgland, Stephanie L"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Insulin in the ventral tegmental area reduces cocaine-evoked dopamine in the nucleus accumbens in vivo(2019-01) Naef, Lindsay; Seabrook, Lauren; Hsiao, Jeff; Li, Calvin; Borgland, Stephanie LMesolimbic dopamine circuits, implicated in incentive motivation, are sensitive to changes in metabolic state such as weight loss and diet-induced obesity. These neurons are important targets for metabolic hormones such as leptin, glucagon-like peptide-1, ghrelin and insulin. Insulin receptors are located on dopamine neurons in the ventral tegmental area (VTA) and we have previously demonstrated that insulin induces long-term depression of excitatory synapses onto VTA dopamine neurons. While insulin can decrease dopamine concentration in somatodendritic regions, it can increase dopamine in striatal slices. Whether insulin directly targets the VTA to alter dopamine release in projection areas, such as the nucleus accumbens (NAc), remains unknown. The main goal of the present experiments was to examine NAc dopamine concentration following VTA administration of insulin. Using in vivo FSCV to detect rapid fluctuations in dopamine concentration, we showed that intra-VTA insulin via action at insulin receptors reduced pedunculopontine nucleus-evoked dopamine release in the NAc. Furthermore, intra-VTA insulin reduced cocaine-potentiated NAc dopamine. Finally, intra-VTA or intranasal insulin decreased locomotor responses to cocaine, an effect blocked by an intra-VTA administered insulin receptor antagonist. Together, these data demonstrate that mesolimbic dopaminergic projections are important targets of the metabolic hormone, insulin.Item Open Access Mesolimbic dopamine and its neuromodulators in obesity and binge eating(2015-12) Naef, Lindsay; Pitman, Kimberley A; Borgland, Stephanie LObesity has reached epidemic prevalence, and much research has focused on homeostatic and nonhomeostatic mechanisms underlying overconsumption of food. Mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), is a key substrate for nonhomeostatic feeding. The goal of the present review is to compare changes in mesolimbic dopamine function in human obesity with diet-induced obesity in rodents. Additionally, we will review the literature to determine if dopamine signaling is altered with binge eating disorder in humans or binge eating modeled in rodents. Finally, we assess modulation of dopamine neurons by neuropeptides and peripheral peptidergic signals that occur with obesity or binge eating. We find that while decreased dopamine concentration is observed with obesity, there is inconsistency outside the human literature on the relationship between striatal D2 receptor expression and obesity. Finally, few studies have explored how orexigenic or anorexigenic peptides modulate dopamine neuronal activity or striatal dopamine in obese models. However, ghrelin modulation of dopamine neurons may be an important factor for driving binge feeding in rodents.Item Open Access Peripheral nerve injury-induced alterations in VTA neuron firing properties(2019-11-04) Huang, Shuo; Borgland, Stephanie L; Zamponi, Gerald WAbstract The ventral tegmental area (VTA) is one of the main brain regions harboring dopaminergic (DA) neurons, and plays important roles in reinforcement and motivation. Recent studies have indicated that DA neurons not only respond to rewarding stimuli, but also to noxious stimuli. Furthermore, VTA DA neurons undergo plasticity during chronic pain. Lateral and medial VTA neurons project to different brain areas, and have been characterized via their distinct electrophysiological properties. In this study, we characterized electrophysiological properties of lateral and medial VTA DA neurons using DAT-cre reporter mice, and examined their plasticity during neuropathic pain states. We observed various DA subpopulations in both the lateral and medial VTA, as defined by action potential firing patterns, independently of synaptic inputs. Our results demonstrated that lateral and medial VTA DA neurons undergo differential plasticity after peripheral nerve injury that leads to neuropathic pain. However, these changes only reside in specific DA subpopulations. This study suggests that lateral and medial VTA DA neurons are differentially affected during neuropathic pain conditions, and emphasizes the importance of subpopulation specificity when targeting VTA DA neurons for treatment of neuropathic pain.