Browsing by Author "Cahill, Aaron G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Fugitive Gas Migration in the Vadose Zone at an Experimental Field Site in the Montney Shale Gas Region(Wiley Subscription Services, Inc., 2022-01) Forde, Olenka N.; Cahill, Aaron G.; Mayer, Bernhard; Beckie, Roger D.; Mayer, K. UlrichFugitive gas migration (GM) from compromised oil and gas wells remains a global concern. To understand environmental impacts from GM there is a need to characterize the transport and fate of fugitive gas in the vadose zone. We simulated subsurface wellbore leakage by injecting natural gas into thick unsaturated glacio-lacustrine deposits in a region of petroleum development in Western Canada. Methane and carbon dioxide effluxes were monitored and soil-gas samples were collected for molecular and stable carbon isotope analyses. A conceptual model was developed to demonstrate the physical and biogeochemical processes that control the spatial-temporal variability of GM. Methane oxidation partially attenuated natural gas; however, gas transport and fate were strongly influenced by variations in grain-size distribution and barometric pressure, resulting in episodic effluxes and lateral gas transport. To accurately detect, quantify and assess GM at oil and gas sites, adequate site characterization and continuous, spatially dense monitoring are necessary.Item Open Access Mobility and persistence of methane in groundwater in a controlled-release field experiment(Nature Publishing Group, 2017-04) Cahill, Aaron G.; Steelman, Colby M.; Forde, Olenka; Kuloyo, Olukayode; Emil Ruff, S.; Mayer, Bernhard; Ulrich Mayer, K.; Strous, Marc; Cathryn Ryan, M.; Cherry, John A.; Parker, Beth L.Expansion of shale gas extraction has fuelled global concern about the potential impact of fugitive methane on groundwater and climate. Although methane leakage from wells is well documented, the consequences on groundwater remain sparsely studied and are thought by some to be minor. Here we present the results of a 72-day methane gas injection experiment into a shallow, flat-lying sand aquifer. In our experiment, although a significant fraction of methane vented to the atmosphere, an equal portion remained in the groundwater. We find that methane migration in the aquifer was governed by subtle grain-scale bedding that impeded buoyant free-phase gas flow and led to episodic releases of free-phase gas. The result was lateral migration of gas beyond that expected by groundwater advection alone. Methane persisted in the groundwater zone despite active growth of methanotrophic bacteria, although much of the methane that vented into the vadose zone was oxidized. Our findings demonstrate that even small-volume releases of methane gas can cause extensive and persistent free phase and solute plumes emanating from leaks that are detectable only by contaminant hydrogeology monitoring at high resolution.