Browsing by Author "Cao, Chen"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A novel method for drug-target interaction prediction based on graph transformers model(2022-11-03) Wang, Hongmei; Guo, Fang; Du, Mengyan; Wang, Guishen; Cao, ChenAbstract Background Drug-target interactions (DTIs) prediction becomes more and more important for accelerating drug research and drug repositioning. Drug-target interaction network is a typical model for DTIs prediction. As many different types of relationships exist between drug and target, drug-target interaction network can be used for modeling drug-target interaction relationship. Recent works on drug-target interaction network are mostly concentrate on drug node or target node and neglecting the relationships between drug-target. Results We propose a novel prediction method for modeling the relationship between drug and target independently. Firstly, we use different level relationships of drugs and targets to construct feature of drug-target interaction. Then, we use line graph to model drug-target interaction. After that, we introduce graph transformer network to predict drug-target interaction. Conclusions This method introduces a line graph to model the relationship between drug and target. After transforming drug-target interactions from links to nodes, a graph transformer network is used to accomplish the task of predicting drug-target interactions.Item Open Access Using discriminative vector machine model with 2DPCA to predict interactions among proteins(2019-12-24) Li, Zhengwei; Nie, Ru; You, Zhuhong; Cao, Chen; Li, JiashuAbstract Background The interactions among proteins act as crucial roles in most cellular processes. Despite enormous effort put for identifying protein-protein interactions (PPIs) from a large number of organisms, existing firsthand biological experimental methods are high cost, low efficiency, and high false-positive rate. The application of in silico methods opens new doors for predicting interactions among proteins, and has been attracted a great deal of attention in the last decades. Results Here we present a novelty computational model with the adoption of our proposed Discriminative Vector Machine (DVM) model and a 2-Dimensional Principal Component Analysis (2DPCA) descriptor to identify candidate PPIs only based on protein sequences. To be more specific, a 2DPCA descriptor is employed to capture discriminative feature information from Position-Specific Scoring Matrix (PSSM) of amino acid sequences by the tool of PSI-BLAST. Then, a robust and powerful DVM classifier is employed to infer PPIs. When applied on both gold benchmark datasets of Yeast and H. pylori, our model obtained mean prediction accuracies as high as of 97.06 and 92.89%, respectively, which demonstrates a noticeable improvement than some state-of-the-art methods. Moreover, we constructed Support Vector Machines (SVM) based predictive model and made comparison it with our model on Human benchmark dataset. In addition, to further demonstrate the predictive reliability of our proposed method, we also carried out extensive experiments for identifying cross-species PPIs on five other species datasets. Conclusions All the experimental results indicate that our method is very effective for identifying potential PPIs and could serve as a practical approach to aid bioexperiment in proteomics research.