Browsing by Author "Ezekowitz, Justin A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Layer-specific strain in patients with heart failure using cardiovascular magnetic resonance: not all layers are the same(2020-12-03) Xu, Lingyu; Pagano, Joseph J; Haykowksy, Mark J; Ezekowitz, Justin A; Oudit, Gavin Y; Mikami, Yoko; Howarth, Andrew; White, James A; Dyck, Jason R B; Anderson, Todd; Paterson, D. I; Thompson, Richard BAbstract Background Global longitudinal strain (GLS), most commonly measured at the endocardium, has been shown to be superior to left ventricular (LV) ejection fraction (LVEF) for the identification of systolic dysfunction and prediction of outcomes in heart failure (HF). We hypothesized that strains measured at different myocardial layers (endocardium = ENDO, epicardium = EPI, average = AVE) will have distinct diagnostic and predictive performance for patients with HF. Methods Layer-specific GLS, layer-specific global circumferential strain (GCS) and global radial strain (GRS) were evaluated by cardiovascular magnetic resonance imaging (CMR) feature tracking in the Alberta HEART study. A total of 453 subjects consisted of healthy controls (controls, n = 77), at-risk for HF (at-risk, n = 143), HF with preserved ejection fraction (HFpEF, n = 87), HF with mid-range ejection fraction (HFmrEF, n = 88) and HF with reduced ejection fraction (HFrEF, n = 58). For outcomes analysis, CMR-derived imaging parameters were adjusted with a base model that included age and N-terminal prohormone of b-type natriuretic peptide (NT-proBNP) to test their independent association with 5-year all-cause mortality. Results GLS_EPI distinguished all groups with preserved LVEF (controls − 16.5 ± 2.4% vs. at-risk − 15.5 ± 2.7% vs. HFpEF − 14.1 ± 3.0%, p < 0.001) while GLS_ENDO and all GCS (all layers) were similar among these groups. GRS was reduced in HFpEF (41.1 ± 13.8% versus 48.9 ± 10.7% in controls, p < 0.001) and the difference between GLS_EPI and GLS_ENDO were significantly larger in HFpEF as compared to controls. Within the preserved LVEF groups, reduced GRS and GLS_EPI were significantly associated with increased LV mass (LVM) and LVM/LV end-diastolic volume EDV (concentricity). In multivariable analysis, only GLS_AVE and GRS predicted 5-year all-cause mortality (all ps < 0.05), with the strongest association with 5-year all-cause mortality by Akaike Information Criterion analysis and significant incremental value for outcomes prediction beyond LVEF or GLS_ENDO by the likelihood ratio test. Conclusion Global strains measured on endocardium, epicardium or averaged across the wall thickness are not equivalent for the identification of systolic dysfunction or outcomes prediction in HF. The endocardium-specific strains were shown to have poorest all-around performance. GLS_AVE and GRS were the only CMR parameters to be significantly associated with 5-year all-cause mortality in multivariable analysis. GLS_EPI and GRS, as well as the difference in endocardial and epicardial strains, were sensitive to systolic dysfunction among HF patients with normal LVEF (> 55%), in whom lower strains were associated with increased concentricity.Item Open Access Quantification of lung water in heart failure using cardiovascular magnetic resonance imaging(2019-09-12) Thompson, Richard B; Chow, Kelvin; Pagano, Joseph J; Sekowski, Viktor; Michelakis, Evangelos D.; Tymchak, Wayne; Haykowsky, Mark J; Ezekowitz, Justin A; Oudit, Gavin Y; Dyck, Jason R B; Kaul, Padma; Savu, Anamaria; Paterson, D. IAbstract Background Pulmonary edema is a cardinal feature of heart failure but no quantitative tests are available in clinical practice. The goals of this study were to develop a simple cardiovascular magnetic resonance (CMR) approach for lung water quantification, to correlate CMR derived lung water with intra-cardiac pressures and to determine its prognostic significance. Methods Lung water density (LWD, %) was measured using a widely available single-shot fast spin-echo acquisition in two study cohorts. Validation Cohort: LWD was compared to left ventricular end-diastolic pressure or pulmonary capillary wedge pressure in 19 patients with heart failure undergoing cardiac catheterization. Prospective Cohort: LWD was measured in 256 subjects, including 121 with heart failure, 82 at-risk for heart failure and 53 healthy controls. Clinical outcomes were evaluated up to 1 year. Results Within the validation cohort, CMR LWD correlated to invasively measured left-sided filling pressures (R = 0.8, p < 0.05). In the prospective cohort, mean LWD was 16.6 ± 2.1% in controls, 17.9 ± 3.0% in patients at-risk and 19.3 ± 5.4% in patients with heart failure, p < 0.001. In patients with or at-risk for heart failure, LWD > 20.8% (mean + 2 standard deviations of healthy controls) was an independent predictor of death, hospitalization or emergency department visit within 1 year, hazard ratio 2.4 (1.1–5.1, p = 0.03). Conclusions In patients with heart failure, increased CMR-derived lung water is associated with increased intra-cardiac filling pressures, and predicts 1 year outcomes. LWD could be incorporated in standard CMR scans.