Browsing by Author "Gandini, Maria A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Determinants of interactions of a novel next-generation gabapentinoid NVA1309 and mirogabalin with the Cavα2δ-1 subunit(2024-08-07) Souza, Ivana A.; Gandini, Maria A.; Ali, Md Y.; Kricek, Franz; Skouteris, George; Zamponi, Gerald W.Abstract NVA1309 is a non-brain penetrant next-generation gabapentinoid shown to bind Cavα2δ at R243 within a triple Arginine motif forming the binding site for gabapentin and pregabalin. In this study we have compared the effects of NVA1309 with Mirogabalin, a gabapentinoid drug with higher affinity for the voltage-gated calcium channel subunit Cavα2δ-1 than pregabalin which is approved for post-herpetic neuralgia in Japan, Korea and Taiwan. Both NVA1309 and mirogabalin inhibit Cav2.2 currents in vitro and decrease Cav2.2 plasma membrane expression with higher efficacy than pregabalin. Mutagenesis of the classical binding residue arginine R243 and the newly identified binding residue lysine K615 reverse the effect of mirogabalin on Cav2.2 current, but not that of NVA1309.Item Open Access Splice-variant specific effects of a CACNA1H mutation associated with writer’s cramp(2021-09-20) Souza, Ivana A.; Gandini, Maria A.; Zamponi, Gerald W.Abstract The CACNA1H gene encodes the α1 subunit of the low voltage-activated Cav3.2 T-type calcium channel, an important regulator of neuronal excitability. Alternative mRNA splicing can generate multiple channel variants with distinct biophysical properties and expression patterns. Two major splice variants, containing or lacking exon 26 (± 26) have been found in different human tissues. In this study, we report splice variant specific effects of a Cav3.2 mutation found in patients with autosomal dominant writer’s cramp, a specific type of focal dystonia. We had previously reported that the R481C missense mutation caused a gain of function effect when expressed in Cav3.2 (+ 26) by accelerating its recovery from inactivation. Here, we show that when the mutation is expressed in the short variant of the channel (− 26), we observe a significant increase in current density when compared to wild-type Cav3.2 (− 26) but the effect on the recovery from inactivation is lost. Our data add to growing evidence that the functional expression of calcium channel mutations depends on which splice variant is being examined.