Browsing by Author "Garland, Allan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Association between afterhours admission to the intensive care unit, strained capacity, and mortality: a retrospective cohort study(2018-04-17) Hall, Adam M; Stelfox, Henry T; Wang, Xioaming; Chen, Guanmin; Zuege, Danny J; Dodek, Peter; Garland, Allan; Scales, Damon C; Berthiaume, Luc; Zygun, David A; Bagshaw, Sean MAbstract Background Admission to the intensive care unit (ICU) outside daytime hours has been shown to be variably associated with increased morbidity and mortality. We aimed to describe the characteristics and outcomes of patients admitted to the ICU afterhours (22:00–06:59 h) in a large Canadian health region. We further hypothesized that the association between afterhours admission and mortality would be modified by indicators of strained ICU capacity. Methods This is a population-based cohort study of 12,265 adults admitted to nine ICUs in Alberta from June 2012 to December 2014. We used a path-analysis modeling strategy and mixed-effects multivariate regression analysis to evaluate direct and integrated associations (mediated through Acute Physiology and Chronic Health Evaluation (APACHE) II score) between afterhours admission (22:00–06:59 h) and ICU mortality. Further analysis examined the effects of strained ICU capacity and varied definitions of afterhours and weekend admissions. ICU occupancy ≥ 90% or clustering of admissions (≥ 0.15, defined as number of admissions 2 h before or after the index admission, divided by the number of ICU beds) were used as indicators of strained capacity. Results Of 12,265 admissions, 34.7% (n = 4251) occurred afterhours. The proportion of afterhours admissions varied amongst ICUs (range 26.7–37.8%). Patients admitted afterhours were younger (median (IQR) 58 (44–70) vs 60 (47–70) years, p < 0.0001), more likely to have a medical diagnosis (75.9% vs 72.1%, p < 0.0001), and had higher APACHE II scores (20.9 (8.6) vs 19.9 (8.3), p < 0.0001). Crude ICU mortality was greater for those admitted afterhours (15.9% vs 14.1%, p = 0.007), but following multivariate adjustment there was no direct or integrated effect on ICU mortality (odds ratio (OR) 1.024; 95% confidence interval (CI) 0.923–1.135, p = 0.658). Furthermore, direct and integrated analysis showed no association of afterhours admission and hospital mortality (p = 0.90) or hospital length of stay (LOS) (p = 0.27), although ICU LOS was shorter (p = 0.049). Early-morning admission (00:00–06:59 h) with ICU occupancy ≥ 90% was associated with short-term (≤ 7 days) and all-cause ICU mortality. Conclusions One-third of critically ill patients are admitted to the ICU afterhours. Afterhours ICU admission was not associated with greater mortality risk in most circumstances but was sensitive to strained ICU capacity.Item Open Access How well does the minimum data set measure healthcare use? a validation study(2018-04-11) Doupe, Malcolm B; Poss, Jeff; Norton, Peter G; Garland, Allan; Dik, Natalia; Zinnick, Shauna; Lix, Lisa MAbstract Background To improve care, planners require accurate information about nursing home (NH) residents and their healthcare use. We evaluated how accurately measures of resident user status and healthcare use were captured in the Minimum Data Set (MDS) versus administrative data. Methods This retrospective observational cohort study was conducted on all NH residents (N = 8832) from Winnipeg, Manitoba, Canada, between April 1, 2011 and March 31, 2013. Six study measures exist. NH user status (newly admitted NH residents, those who transferred from one NH to another, and those who died) was measured using both MDS and administrative data. Rates of in-patient hospitalizations, emergency department (ED) visits without subsequent hospitalization, and physician examinations were also measured in each data source. We calculated the sensitivity, specificity, positive and negative predictive values (PPV, NPV), and overall agreement (kappa, κ) of each measure as captured by MDS using administrative data as the reference source. Also for each measure, logistic regression tested if the level of disagreement between data systems was associated with resident age and sex plus NH owner-operator status. Results MDS accurately identified newly admitted residents (κ = 0.97), those who transferred between NHs (κ = 0.90), and those who died (κ = 0.95). Measures of healthcare use were captured less accurately by MDS, with high levels of both under-reporting and false positives (e.g., for in-patient hospitalizations sensitivity = 0.58, PPV = 0.45), and moderate overall agreement levels (e.g., κ = 0.39 for ED visits). Disagreement was sometimes greater for younger males, and for residents living in for-profit NHs. Conclusions MDS can be used as a stand-alone tool to accurately capture basic measures of NH use (admission, transfer, and death), and by proxy NH length of stay. As compared to administrative data, MDS does not accurately capture NH resident healthcare use. Research investigating these and other healthcare transitions by NH residents requires a combination of the MDS and administrative data systems.