Browsing by Author "Huang, Sun"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Cav3.2 T-type channel activity(2020-03-06) Stringer, Robin N; Jurkovicova-Tarabova, Bohumila; Huang, Sun; Haji-Ghassemi, Omid; Idoux, Romane; Liashenko, Anna; Souza, Ivana A; Rzhepetskyy, Yuriy; Lacinova, Lubica; Van Petegem, Filip; Zamponi, Gerald W; Pamphlett, Roger; Weiss, NorbertAbstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of cortical, brain stem and spinal motor neurons that leads to muscle weakness and death. A previous study implicated CACNA1H encoding for Cav3.2 calcium channels as a susceptibility gene in ALS. In the present study, two heterozygous CACNA1H variants were identified by whole genome sequencing in a small cohort of ALS patients. These variants were functionally characterized using patch clamp electrophysiology, biochemistry assays, and molecular modeling. A previously unreported c.454GTAC > G variant produced an inframe deletion of a highly conserved isoleucine residue in Cav3.2 (p.ΔI153) and caused a complete loss-of-function of the channel, with an additional dominant-negative effect on the wild-type channel when expressed in trans. In contrast, the c.3629C > T variant caused a missense substitution of a proline with a leucine (p.P1210L) and produced a comparatively mild alteration of Cav3.2 channel activity. The newly identified ΔI153 variant is the first to be reported to cause a complete loss of Cav3.2 channel function. These findings add to the notion that loss-of-function of Cav3.2 channels associated with rare CACNA1H variants may be risk factors in the complex etiology of ALS.Item Open Access Differential modulation of NMDA and AMPA receptors by cellular prion protein and copper ions(2018-10-25) Huang, Sun; Chen, Lina; Bladen, Chris; Stys, Peter K; Zamponi, Gerald WAbstract N-Methyl-D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are two major types of ionotropic glutamate receptors involved in synaptic transmission. However, excessive activity of these receptors can be cytotoxic and thus their function must be precisely controlled. We have previously reported that NMDA receptor activity is dysregulated following genetic knockout of cellular prion protein (PrPC), and that PrPC regulation of NMDA receptors is copper-dependent. Here, we employed electrophysiological methods to study NMDAR and AMPAR currents of cultured hippocampal neurons from PrPC overexpresser mice. We show that NMDA receptor current amplitude and kinetics are differentially modulated by overexpression of human or mouse PrPC. By contrast, AMPA receptor activity was unaffected. Nonetheless, AMPA receptor activity was modulated by copper ions in a manner similar to what we previously reported for NMDA receptors. Taken together, our findings reveal that AMPA and NMDA receptors are differentially regulated by PrPC, but share common modulation by copper ions.Item Open Access Mutation of copper binding sites on cellular prion protein abolishes its inhibitory action on NMDA receptors in mouse hippocampal neurons(2021-07-19) Huang, Sun; Black, Stefanie A.; Huang, Junting; Stys, Peter K.; Zamponi, Gerald W.Abstract We have previously reported that cellular prion protein (PrPC) can down-regulate NMDA receptor activity and in a copper dependent manner. Here, we employed AAV9 to introduce murine cellular prion protein into mouse hippocampal neurons in primary cultures from PrP null mice to determine the role of the six copper binding motifs located within the N-terminal domain of PrPC. The results demonstrate that viral expression of wild type PrPC lowers NMDAR activity in PrP null mouse hippocampal neurons by reducing the magnitude of non-desensitizing currents. Elimination of the last two copper binding sites alone, or in combination with the remaining four attenuates this protective effect. Thus our data suggest that copper ion interactions with specific binding sites on PrPC are critical for PrPC dependent modulation of NMDA receptor function.Item Open Access The terpenes camphene and alpha-bisabolol inhibit inflammatory and neuropathic pain via Cav3.2 T-type calcium channels(2021-11-14) Gadotti, Vinicius M.; Huang, Sun; Zamponi, Gerald W.Abstract T-type calcium channels are known molecular targets of certain phytocannabinoids and endocannabinoids. Here we explored the modulation of Cav3.2 T-type calcium channels by terpenes derived from cannabis plants. A screen of eight commercially available terpenes revealed that camphene and alpha-bisabolol mediated partial, but significant inhibition of Cav3.2 channels expressed in tsA-201 cells, as well as native T-type channels in mouse dorsal root ganglion neurons. Both compounds inhibited peak current amplitude with IC50s in the low micromolar range, and mediated an additional small hyperpolarizing shift in half-inactivation voltage. When delivered intrathecally, both terpenes inhibited nocifensive responses in mice that had received an intraplantar injection of formalin, with alpha-bisabolol showing greater efficacy. Both terpenes reduced thermal hyperalgesia in mice injected with Complete Freund’s adjuvant. This effect was independent of sex, and absent in Cav3.2 null mice, indicating that these compounds mediate their analgesic properties by acting on Cav3.2 channels. Both compounds also inhibited mechanical hypersensitivity in a mouse model of neuropathic pain. Hence, camphene and alpha-bisabolol have a wide spectrum of analgesic action by virtue of inhibiting Cav3.2 T-type calcium channels.