Browsing by Author "Hughes, Philip Floyd"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Application of immobilized ATP to the study of NLRP inflammasomes(2019-01-11) Liao, Kuo Chieh; Sandall, Christina F.; Carlson, David A.; Ulke-Lemée, Annegret; Platnich, Jaye; Hughes, Philip Floyd; Muruve, Daniel A.; Haystead, Timothy Arthur James; MacDonald, Justin AnthonyThe NLRP proteins are a subfamily of the NOD-like receptor (NLR) innate immune sensors that possess an ATP-binding NACHT domain. As the most well-studied member, NLRP3 can initiate the assembly process of a multiprotein complex, termed the inflammasome, upon detection of a wide range of microbial products and endogenous danger signals and results in the activation of pro-caspase-1, a cysteine protease that regulates multiple host defense pathways including cytokine maturation. Dysregulated NLRP3 activation contributes to inflammation and the pathogenesis of several chronic diseases, and the ATP-binding properties of NLRPs are thought to be critical for inflammasome activation. In light of this, we examined the utility of immobilized ATP matrices in the study of NLRP inflammasomes. Using NLRP3 as the prototypical member of the family, P-linked ATP Sepharose was determined to be a highly-effective capture agent. In subsequent examinations, P-linked ATP Sepharose was used as an enrichment tool to enable the effective profiling of NLRP3-biomarker signatures with selected reaction monitoring-mass spectrometry (SRM-MS). Finally, ATP Sepharose was used in combination with a fluorescence-linked enzyme chemoproteomic strategy (FLECS) screen to identify potential competitive inhibitors of NLRP3. The identification of a novel benzo[d]imidazol-2-one inhibitor that specifically targets the ATP-binding and hydrolysis properties of the NLRP3 protein implies that ATP Sepharose and FLECS could be applied other NLRPs as well.Item Open Access Targeting Pim kinases and DAPK3 to control hypertension(2018-07-04) Carlson, David A.; Singer, Miriam R.; Sutherland, Cindy; Redondo, Clara; Alexander, Leila T.; Hughes, Philip Floyd; Knapp, Stefan; Gurley, Susan B.; Sparks, Matthew A.; MacDonald, Justin Anthony; Haystead, Timothy Arthur JamesSustained vascular smooth muscle hypercontractility promotes hypertension and cardiovascular disease. The etiology of hypercontractility is not completely understood. New therapeutic targets remain vitally important for drug discovery. Here we report that Pim kinases, in combination with DAPK3, regulate contractility and control hypertension. Using a co-crystal structure of lead molecule (HS38) in complex with DAPK3, a dual Pim/DAPK3 inhibitor (HS56) and selective DAPK3 inhibitors (HS94 and HS148) were developed to provide mechanistic insight into the polypharmacology of hypertension. In vitro and ex vivo studies indicated that Pim kinases directly phosphorylate smooth muscle targets and that Pim/DAPK3 inhibition, unlike selective DAPK3 inhibition, significantly reduces contractility. In vivo, HS56 decreased blood pressure in spontaneously hypertensive mice in a dose-dependent manner without affecting heart rate. These findings suggest including Pim kinase inhibition within a multi-target engagement strategy for hypertension management. HS56 represents a significant step in the development of molecularly targeted antihypertensive medications.