Browsing by Author "Iftinca, Mircea C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry(Elsevier, 2008-05-22) Kisilevsky, Alexandra E.; Mulligan, Sean J.; Altier, Christophe; Iftinca, Mircea C.; Varela, Diego L.; Tai, Chao; Chen, Lina; Hameed, Shahid; Hamid, Jawed; MacVicar, Brian Archibald; Zamponi, Gerald W.Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.Item Open Access Modeling temperature- and Cav3 subtype-dependent alterations in T-type calcium channel mediated burst firing(2021-07-17) Fernandez, Fernando R.; Iftinca, Mircea C.; Zamponi, Gerald W.; Turner, Ray W.Abstract T-type calcium channels are important regulators of neuronal excitability. The mammalian brain expresses three T-type channel isoforms (Cav3.1, Cav3.2 and Cav3.3) with distinct biophysical properties that are critically regulated by temperature. Here, we test the effects of how temperature affects spike output in a reduced firing neuron model expressing specific Cav3 channel isoforms. The modeling data revealed only a minimal effect on baseline spontaneous firing near rest, but a dramatic increase in rebound burst discharge frequency for Cav3.1 compared to Cav3.2 or Cav3.3 due to differences in window current or activation/recovery time constants. The reduced response by Cav3.2 could optimize its activity where it is expressed in peripheral tissues more subject to temperature variations than Cav3.1 or Cav3.3 channels expressed prominently in the brain. These tests thus reveal that aspects of neuronal firing behavior are critically dependent on both temperature and T-type calcium channel subtype.