Browsing by Author "Kisilevsky, Alexandra E."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry(Elsevier, 2008-05-22) Kisilevsky, Alexandra E.; Mulligan, Sean J.; Altier, Christophe; Iftinca, Mircea C.; Varela, Diego L.; Tai, Chao; Chen, Lina; Hameed, Shahid; Hamid, Jawed; MacVicar, Brian Archibald; Zamponi, Gerald W.Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.Item Open Access Presynaptic calcium channels: structure, regulators, and blockers(Springer, 2008-01-06) Kisilevsky, Alexandra E.; Zamponi, Gerald W.The central and peripheral nervous systems express multiple types of ligand and voltage-gated calcium channels (VGCCs), each with specific physiological roles and pharmacological and electrophysiological properties. The members of the Ca(v)2 calcium channel family are located predominantly at presynaptic nerve terminals, where they are responsible for controlling evoked neurotransmitter release. The activity of these channels is subject to modulation by a number of different means, including alternate splicing, ancillary subunit associations, peptide and small organic blockers, G-protein-coupled receptors (GPCRs), protein kinases, synaptic proteins, and calcium-binding proteins. These multiple and complex modes of calcium channel regulation allow neurons to maintain the specific, physiological window of cytoplasmic calcium concentrations which is required for optimal neurotransmission and proper synaptic function. Moreover, these varying means of channel regulation provide insight into potential therapeutic targets for the treatment of pathological conditions that arise from disturbances in calcium channel signaling. Indeed, considerable efforts are presently underway to identify and develop specific presynaptic calcium channel blockers that can be used as analgesics.Item Open Access Scanning mutagenesis of the I-II loop of the Cav2.2 calcium channel identifies residues Arginine 376 and Valine 416 as molecular determinants of voltage dependent G protein inhibition(BioMed Central Ltd., 2010-02-03) Tedford, Hugo William; Kisilevsky, Alexandra E.; Vieira, Luciene Bruno; Varela, Diego L.; Chen, Lina; Zamponi, Gerald W.Direct interaction with the beta subunit of the heterotrimeric G protein complex causes voltage-dependent inhibition of N-type calcium channels. To further characterize the molecular determinants of this interaction, we performed scanning mutagenesis of residues 372-387 and 410-428 of the N-type channel alpha1 subunit, in which individual residues were replaced by either alanine or cysteine. We coexpressed wild type Gbeta1gamma2 subunits with either wild type or point mutant N-type calcium channels, and voltage-dependent, G protein-mediated inhibition of the channels (VDI) was assessed using patch clamp recordings. The resulting data indicate that Arg376 and Val416 of the alpha1 subunit, residues which are surface-exposed in the presence of the calcium channel beta subunit, contribute significantly to the functional inhibition by Gbeta1. To further characterize the roles of Arg376 and Val416 in this interaction, we performed secondary mutagenesis of these residues, coexpressing the resulting mutants with wild type Gbeta1gamma2 subunits and with several isoforms of the auxiliary beta subunit of the N-type channel, again assessing VDI using patch clamp recordings. The results confirm the importance of Arg376 for G protein-mediated inhibition and show that a single amino acid substitution to phenylalanine drastically alters the abilities of auxiliary calcium channel subunits to regulate G protein inhibition of the channel.