Browsing by Author "Mody, Christopher H"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Effectiveness of a standardized electronic admission order set for acute exacerbation of chronic obstructive pulmonary disease(2018-05-30) Pendharkar, Sachin R; Ospina, Maria B; Southern, Danielle A; Hirani, Naushad; Graham, Jim; Faris, Peter; Bhutani, Mohit; Leigh, Richard; Mody, Christopher H; Stickland, Michael KAbstract Background Variation in hospital management of patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) may prolong length of stay, increasing the risk of hospital-acquired complications and worsening quality of life. We sought to determine whether an evidence-based computerized AECOPD admission order set could improve quality and reduce length of stay. Methods The order set was designed by a provincial COPD working group and implemented voluntarily among three physician groups in a Canadian tertiary-care teaching hospital. The primary outcome was length of stay for patients admitted during order set implementation period, compared to the previous 12 months. Secondary outcomes included length of stay of patients admitted with and without order set after implementation, all-cause readmissions, and emergency department visits. Results There were 556 admissions prior to and 857 admissions after order set implementation, for which the order set was used in 47%. There was no difference in overall length of stay after implementation (median 6.37 days (95% confidence interval 5.94, 6.81) pre-implementation vs. 6.02 days (95% confidence interval 5.59, 6.46) post-implementation, p = 0.26). In the post-implementation period, order set use was associated with a 1.15-day reduction in length of stay (95% confidence interval − 0.5, − 1.81, p = 0.001) compared to patients admitted without the order set. There was no difference in readmissions. Conclusions Use of a computerized guidelines-based admission order set for COPD exacerbations reduced hospital length of stay without increasing readmissions. Interventions to increase order set use could lead to greater improvements in length of stay and quality of care.Item Open Access Host Defence to Pulmonary Mycosis(1999-01-01) Mody, Christopher H; Warren, Peter WOBJECTIVE: To provide a basic understanding of the mechanisms of host defense to pathogenic fungi. This will help physicians understand why some patients are predisposed to fungal infections and update basic scientists on how microbial immunology applies to fungal disease.DATA SOURCES: English articles from 1966 to present were identified from a MEDLINE search.STUDY SELECTION: Articles were identified by a MEDLINE search of ‘exp lung/’ or ‘exp lung diseases/’ and ‘exp fungi/’. The titles and abstracts were screened to identify articles that contained salient information pertaining to host defense of respiratory mycoses.DATA EXTRACTION: Information was summarized from the articles pertaining to host defense of pulmonary mycosis that had been identified by the MEDLINE search.DATA SYNTHESIS: Fungi represent a unique and highly diverse group of pathogenic organisms that have become an increasingly prevalent cause of life-threatening illness. A worldwide increase in persons with immunodeficiency has been a major contributing factor to the increase in fungal disease. As a result, clinicians are faced with an expanding array of fungal infections that pose diagnostic and therapeutic challenges. The respiratory tract is the route of acquisition for many important fungal infections; thus, understanding the host defense in the lung is an essential component of understanding host defense to fungal disease. With this understanding, fungi may be divided on the basis of the predilection of certain mycosis for specific immune defects.CONCLUSIONS: By separating fungi based on the host immune defects that predispose to disease, in conjunction with traditional divisions based on the geographic distribution of fungi, clinicians are able to focus their diagnostic efforts and to identify fungal pathogens better. In addition, an understanding of the normal host defense mechanisms that serve to control fungal infections is essential to the development of novel antifungal therapies.