Browsing by Author "Nabbi, Arash"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access ING3 promotes prostate cancer growth by activating the androgen receptor(2017-05-16) Nabbi, Arash; McClurg, Urszula L; Thalappilly, Subhash; Almami, Amal; Mobahat, Mahsa; Bismar, Tarek A; Binda, Olivier; Riabowol, Karl TAbstract Background The androgen receptor (AR) is a major driver of prostate cancer, and increased AR levels and co-activators of the receptor promote the development of prostate cancer. INhibitor of Growth (ING) proteins target lysine acetyltransferase or lysine deacetylase complexes to the histone H3K4Me3 mark of active transcription, to affect chromatin structure and gene expression. ING3 is a stoichiometric member of the TIP60 lysine acetyltransferase complex implicated in prostate cancer development. Methods Biopsies of 265 patients with prostate cancer were stained for ING3, pan-cytokeratin, and DNA. LNCaP and C4-2 androgen-responsive cells were used for in vitro assays including immunoprecipitation, western blotting, Luciferase reporter assay and quantitative polymerase chain reaction. Cell viability and migration assays were performed in prostate cancer cell lines using scrambled siRNA or siRNA targeting ING3. Results We find that ING3 levels and AR activity positively correlate in prostate cancer. ING3 potentiates androgen effects, increasing expression of androgen-regulated genes and androgen response element-driven reporters to promote growth and anchorage-independent growth. Conversely, ING3 knockdown inhibits prostate cancer cell growth and invasion. ING3 activates the AR by serving as a scaffold to increase interaction between TIP60 and the AR in the cytoplasm, enhancing receptor acetylation and translocation to the nucleus. Activation is independent of ING3's ability to target the TIP60 complex to H3K4Me3, identifying a previously unknown chromatin-independent cytoplasmic activity for ING3. In agreement with in vitro observations, analysis of The Cancer Genome Atlas (TCGA) data (n = 498) and a prostate cancer tissue microarray (n = 256) show that ING3 levels are higher in aggressive prostate cancers, with high levels of ING3 predicting shorter patient survival in a low AR subgroup. Including ING3 levels with currently used indicators such as the Gleason score provides more accurate prognosis in primary prostate cancer. Conclusions In contrast to the majority of previous reports suggesting tumor suppressive functions in other cancers, our observations identify a clear oncogenic role for ING3, which acts as a co-activator of AR in prostate cancer. Data from TCGA and our previous and current tissue microarrays suggest that ING3 levels correlate with AR levels and that in patients with low levels of the receptor, ING3 level could serve as a useful prognostic biomarker.Item Open Access The Role of the ING3 Epigenetic Regulator in Prostate Cancer(2017) Nabbi, Arash; Riabowol, Karl; Johnston, Randal; Jirik, Frank; Bismar, Tarek; Lewis, John; Morris, DonaldINhibitor of growth (ING) proteins are epigenetic regulators and stoichiometric members of histone acetyltransferase (KAT) or histone deacetylase (KDAC) complexes. By reading the histone mark H3K4me3, they direct their complexes to chromatin to alter gene expression. This thesis focuses on the role of ING3 in prostate cancer biology. Since rigorous characterization of antibodies is a prerequisite to acquire reliable results, we began by characterizing a new mouse monoclonal antibody against ING3. We profiled the expression of ING3 protein in normal human tissues and found that it is highly expressed in bone marrow, suggesting high expression in hematopoietic cell precursors. We also reported that ING3 protein levels are highest in proliferating tissues of the small intestine and epidermis. These data suggest a role for ING3 in promoting cell growth and renewal. In the second part of this study, we investigated the effects of ING3 on the androgen receptor (AR) pathway in prostate cancer (PC). We hypothesized that ING3 by virtue of being an essential member of TIP60 KAT complex, plays a role in post-translational modifications of AR protein and thereby contributes to PC progression. We found that the levels of ING3 and AR are positively correlated in patient samples and cell lines. ING3 potentiates androgen effects, activating expression of androgen responsive genes and AR-regulated reporters. We showed that ING3 interacts with the binding domain of AR and this interaction happens in the cytoplasm in the absence of androgens. ING3 increases AR-TIP60 interaction, promoting AR acetylation and nuclear translocation. The activating role of ING3 is independent of its ability to target the TIP60 complex to H3K4me3, identifying a previously unknown function for ING3. Knockdown of ING3 inhibits PC cell proliferation and migration, establishing ING3 as a positive regulator of growth in PC. Lastly, we asked whether ING3 could serve as a biomarker to distinguish latent versus aggressive PC. ING3 levels are higher in aggressive PC, with high levels of ING3 predicting shorter overall survival. Analysis with other predictive factors shows that including ING3 levels provides more accurate prognosis in PC.