Browsing by Author "Odame-Ankrah, Charles A."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Interference from HONO in the measurement of ambient air NO2 via photolytic conversion and quantification of NO(Elsevier, 2020-12-07) Gingerysty, Nicholas J.; Odame-Ankrah, Charles A.; Jordan, Nick; Osthoff, Hans D.The reference method to quantify mixing ratios of the criteria air pollutant nitrogen dioxide (NO2) is NO-O3 chemiluminescence (CL), in which mixing ratios of nitric oxide (NO) are measured by sampling ambient air directly, and mixing ratios of NOx (= sum of NO and NO2) are measured by converting NO2 to NO using, for example, heated molybdenum catalyst or, more selectively, photolytic conversion (P-CL). In this work, the nitrous acid (HONO) interference in the measurement of NO2 by P-CL was investigated. Results with two photolytic NO2 converters are presented. The first used radiation centered at 395 nm, a wavelength region commonly utilized in P-CL. The second used light at 415 nm, where the overlap with the HONO absorption spectrum and hence its photolysis rate are less. Mixing ratios of NO2, NOx and HONO entering and exiting the converters were quantified by Thermal Dissociation Cavity Ring-down Spectroscopy (TD-CRDS). Both converters exhibited high NO2 conversion efficiency (CFNO2; >90%) and partial conversion of HONO. Plots of CF against flow rate were consistent with photolysis frequencies of 4.2 s 1 and 2.9 s 1 for NO2 and 0.25 s-1 and 0.10 s-1 for HONO at 395 nm and 415 nm, respectively. CFHONO was larger than predicted from the overlap of the emission and HONO absorption spectra. The results imply that measurements of NO2 by P-CL marginally but systematically overestimate true NO2 concentrations, and that this interference should be considered in environments with high HONO:NO2 ratios such as the marine boundary layer or in biomass burning plumes.Item Open Access Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia(Copernicus Publications, 2018-05-04) Osthoff, Hans D.; Odame-Ankrah, Charles A.; Taha, Youssef M.; Tokarek, Travis W.; Schiller, Corinne L.; Haga, Donna; Jones, Keith; Vingarzan, RoxanneThe nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx (= NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low (< 30 and < 100 parts-per-trillion by volume (pptv) and median nocturnal peak values of 7.8 and 7.9 pptv, respectively). Mixing ratios of ClNO2 frequently peaked 1–2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.Item Open Access Low levels of nitryl chloride at ground level: Nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia(Copernicus, 2018-05-04) Osthoff, Hans D.; Odame-Ankrah, Charles A.; Taha, Youssef M.; Tokarek, Travis W.; Schiller, Corinne L.; Haga, Donna; Jones, Keith H.; Vingarzan, RoxanneThe nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx (Combining double low line NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low (< 30 and < 100 parts-per-trillion by volume (pptv) and median nocturnal peak values of 7.8 and 7.9 pptv, respectively). Mixing ratios of ClNO2 frequently peaked 1-2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.Item Open Access Principal component analysis of summertime ground site measurements in the Athabasca oil sands with a focus on analytically unresolved intermediate-volatility organic compounds(European Geosciences Union, 2018-12-14) Tokarek, Travis W.; Odame-Ankrah, Charles A.; Huo, Jennifer A.; McLaren, Robert; Lee, Alex K. Y.; Adam, Max G.; Willis, Megan D.; Abbatt, Jonathan P. D.; Mihele, Cristian; Darlington, Andrea; Mittermeier, Richard L.; Strawbridge, Kevin; Hayden, Katherine L.; Olfert, Jason S.; Schnitzler, Elijah G.; Brownsey, Duncan K.; Assad, Faisal V.; Wentworth, Gregory R.; Tevlin, Alex G.; Worthy, Douglas E. J.; Li, Shao-Meng; Liggio, John; Brook, Jeffrey R.; Osthoff, Hans D.In this paper, measurements of air pollutants made at a ground site near Fort McKay in the Athabasca oil sands region as part of a multi-platform campaign in the summer of 2013 are presented. The observations included measurements of selected volatile organic compounds (VOCs) by a gas chromatograph–ion trap mass spectrometer (GC-ITMS). This instrument observed a large, analytically unresolved hydrocarbon peak (with a retention index between 1100 and 1700) associated with intermediate-volatility organic compounds (IVOCs). However, the activities or processes that contribute to the release of these IVOCs in the oil sands region remain unclear. Principal component analysis (PCA) with varimax rotation was applied to elucidate major source types impacting the sampling site in the summer of 2013. The analysis included 28 variables, including concentrations of total odd nitrogen (NOy), carbon dioxide (CO2), methane (CH4), ammonia (NH3), carbon monoxide (CO), sulfur dioxide (SO2), total reduced-sulfur compounds (TRSs), speciated monoterpenes (including α- and β-pinene and limonene), particle volume calculated from measured size distributions of particles less than 10 and 1 µm in diameter (PM10−1 and PM1), particle-surface-bound polycyclic aromatic hydrocarbons (pPAHs), and aerosol mass spectrometer composition measurements, including refractory black carbon (rBC) and organic aerosol components. The PCA was complemented by bivariate polar plots showing the joint wind speed and direction dependence of air pollutant concentrations to illustrate the spatial distribution of sources in the area. Using the 95 % cumulative percentage of variance criterion, 10 components were identified and categorized by source type. These included emissions by wet tailing ponds, vegetation, open pit mining operations, upgrader facilities, and surface dust. Three components correlated with IVOCs, with the largest associated with surface mining and likely caused by the unearthing and processing of raw bitumen.Item Open Access Real-time vapor detection of nitroaromatic explosives by catalytic thermal dissociation blue diode laser cavity ring-down spectroscopy(Elsevier, 2013-07-24) Taha, Youssef M.; Odame-Ankrah, Charles A.; Osthoff, Hans D.A compact blue diode laser catalytic thermal dissociation cavity ring-down spectrometer (cTD–CRDS) to detect vapors of nitroaromatic explosives is described. The instrument uses heated platinum(IV) oxide catalyst to convert nitroaromatic compounds to NO2, which is detected at 405 nm. Using the relatively volatile nitrobenzene as a test compound, we show by Fourier Transform Infrared Spectroscopy (FTIR) in off-line experiments that nitroaromatics can be quantitatively converted to NO2. The cTD–CRDS detection limit was 0.3 parts-per-billion by volume (ppbv) and sufficiently low to allow the detection of a room temperature sample of 2,4,6-trinitrotoluene (TNT) without sample preconcentration.Item Open Access Ubiquity of ClNO2 in the urban boundary layer of Calgary, AB, Canada(NRC Research Press (Canadian Science Publishing), 2015-12-17) Mielke, Levi H.; Furgeson, Amanda; Odame-Ankrah, Charles A.; Osthoff, Hans D.The role of nitryl chloride (ClNO2) as a nocturnal nitrogen oxide reservoir species and chlorine atom precursor is well established for polluted coastal areas, but its role at mid-continental locations is less clear. In this manuscript, intermittent measurements over the course of several seasons of ClNO2 mixing ratios by iodide ion chemical ionization mass spectrometry (CIMS) in Calgary, AB, Canada, are presented. Mixing ratios were highly variable between nights and seasons and depended on the abundances of precursors and meteorological conditions. The lowest ClNO2 mixing ratios (nocturnal maximum of 30 parts-per-trillion by volume, pptv) were observed in the summer, rationalized by losses of the nitrate radical (NO3) that were more efficient than in the other months. Higher ClNO2 mixing ratios (up to 330 pptv) were observed in the winter and spring months, but varied between nights. In the fall, ClNO2 mixing ratios increased from night to night following the application of salt to roads. The ClNO2 yield relative to the amount of NO3 produced from oxidation of NO2 by O3 ranged from 0.1% to 4.5% (10th and 90th percentiles; median 1.0%). The ClNO2 yield relative to consumed N2O5 consumed by heterogeneous reactions was estimated using a time-integrated box model and ranged from 0.5% to 12.1% (10th and 90th percentiles; median 3.4%). The ubiquity of ClNO2 implies that the Cl atom needs to be considered as an oxidant in high-latitude urban environments in winter.