Browsing by Author "Redman, Elizabeth M"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A database for ITS2 sequences from nematodes(2020-07-10) Workentine, Matthew L; Chen, Rebecca; Zhu, Shawna; Gavriliuc, Stefan; Shaw, Nicolette; Rijke, Jill d; Redman, Elizabeth M; Avramenko, Russell W; Wit, Janneke; Poissant, Jocelyn; Gilleard, John SAbstract Background Marker gene surveys have a wide variety of applications in species identification, population genetics, and molecular epidemiology. As these methods expand to new types of organisms and additional markers beyond 16S and 18S rRNA genes, comprehensive databases are a critical requirement for proper analysis of these data. Results Here we present an ITS2 rDNA database for marker gene surveys of both free-living and parasitic nematode populations and the software used to build the database. This is currently the most complete and up-to-date ITS2 database for nematodes and is able to reproduce previous analysis that used a smaller database. Conclusions This database is an important resource for researchers working on nematodes and also provides a tool to create ITS2 databases for any given taxonomy.Item Open Access High levels of third-stage larvae (L3) overwinter survival for multiple cattle gastrointestinal nematode species on western Canadian pastures as revealed by ITS2 rDNA metabarcoding(2020-09-10) Wang, Tong; Avramenko, Russell W; Redman, Elizabeth M; Wit, Janneke; Gilleard, John S; Colwell, Douglas DAbstract Background The ability of infective larvae of cattle gastrointestinal nematode (GIN) species to overwinter on pastures in northerly climatic zones with very cold dry winters is poorly understood. This is an important knowledge gap with critical implications for parasite risk assessment and control. Methods Infective third-stage larvae (L3) were quantified in samples of fecal pats, together with adjacent grass and soil, before and after winter on three farms in southern, central and northern Alberta. Nemabiome ITS2 metabarcoding was then performed on the harvested L3 populations to determine the species composition. Finally, parasite-free tracer calves were used to investigate if the L3 surviving the winter could infect calves and develop to adult worms in spring. Results Farm level monitoring, using solar powered weather stations, revealed that ground temperatures were consistently higher, and less variable, than the air temperatures; minimum winter air and ground temperatures were − 32.5 °C and − 24.7 °C respectively. In spite of the extremely low minimum temperatures reached, L3 were recovered from fecal pats and grass before and after winter with only a 38% and 61% overall reduction over the winter, respectively. Nemabiome ITS2 metabarcoding assay revealed that the proportion of L3 surviving the winter was high for both Cooperia oncophora and Ostertagia ostertagi although survival of the former species was statistically significantly higher than the latter. Nematodirus helvetinaus and Trichostrongylus axei could be detected after winter whereas Haemonchus placei L3 could not overwinter at all. Adult C. oncophora, O. ostertagi and N. helvetianus could be recovered from tracer calves grazing after the winter. Conclusions The largest proportion of L3 were recovered from fecal pats suggesting this is important refuge for L3 survival. Results also show that L3 of several GIN parasite species can survive relatively efficiently on pastures even in the extreme winter conditions in western Canada. Tracer calf experiments confirmed that overwintered L3 of both C. oncophora and O. ostertagi were capable of establishing a patent infection in the following spring. These results have important implications for the epidemiology, risk of production impact and the design of effective control strategies. The work also illustrates the value of applying ITS2 nemabiome metabarcoding to environmental samples.Item Open Access High species diversity of trichostrongyle parasite communities within and between Western Canadian commercial and conservation bison herds revealed by nemabiome metabarcoding(2018-05-15) Avramenko, Russell W; Bras, Ana; Redman, Elizabeth M; Woodbury, Murray R; Wagner, Brent; Shury, Todd; Liccioli, Stefano; Windeyer, M. C; Gilleard, John SAbstract Background Many trichostrongylid nematode species are reported to infect bison, some of which are major causes of disase and production loss in North American bison herds. However, there is little information on the species distribution and relative abundance of these parasites in either commercial or conservation herds. This is largely because trichostrongylid nematode species cannot be distinguished by visual microscopic examination of eggs present in feces. Consequently, we have applied ITS2 rDNA nemabiome metabarcoding to describe the trichostrongyle parasite species diversity in 58 bison production groups derived from 38 commercial North American plains bison (Bison bison bison) herds from across western Canada, and two bison conservation herds located in Elk Island National Park (EINP) [plains bison and wood bison (Bison bison athabascae)] and one in Grasslands National Park (GNP) (plains bison). Results We report much higher infection intensities and parasite species diversity in commercial bison herds than previously reported in beef cattle herds grazing similar latitudes. Predominant trichostrongyle parasite species in western Canadian commercial bison herds are those commonly associated with Canadian cattle, with Ostertagia ostertagi being the most abundant followed by Cooperia oncophora. Combined with high fecal egg counts in many herds, this is consistent with significant clinical and production-limiting gastrointestinal parasitism in western Canadian bison herds. However, Haemonchus placei was the most abundant species in five of the production groups. This is both surprising and important, as this highly pathogenic blood-feeding parasite has not been reported at such abundance, in any livestock species, at such northerly latitudes. The presence of Trichostrongylus axei as the most abundant parasite in four herds is also unusual, relative to cattle. There were striking differences in parasite communities between the EINP and commercial bison herds. Most notably, Orloffia bisonis was the predominant species in the wood bison herd despite being found at only low levels in all other herds surveyed. Conclusions This study represents the most comprehensive description of parasite communities in North American bison to date and illustrates the power of deep amplicon sequencing as a tool to study species diversity in gastrointestinal nematode communities.