Browsing by Author "Su, Jian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A linear, stabilized, non-spatial iterative, partitioned time stepping method for the nonlinear Navier–Stokes/Navier–Stokes interaction model(2019-07-03) Li, Jian; Huang, Pengzhan; Su, Jian; Chen, ZhangxinAbstract In this paper, a linear, stabilized, non-spatial iterative, partitioned time stepping method is developed and studied for the nonlinear Navier–Stokes/Navier–Stokes interaction. A backward Euler scheme is utilized for the temporal discretization while a linear Oseen scheme for the trilinear term is used to affect the spatial discretization approximated by the equal order elements. Therefore, we only solve a linear Stokes problem without spatial iterative per time step for each individual domain. Then, the method exploits properties of the Navier–Stokes/Navier–Stokes system to establish the stability and convergence by rigorous analysis. Finally, numerical experiments are presented to show the performance of the proposed method.Item Open Access Study on the Imbibition Characteristics of Different Types of Pore-Throat Based on Nuclear Magnetic Resonance Technology(2022-04-27) Liu, Xiong; Zhang, Yang; Zhang, Ziming; Xu, Jinze; Zhou, Desheng; Su, Jian; Tang, Ying“Fracturing network+imbibition oil production” is a new attempt to effectively develop low-permeability tight reservoirs. Fracturing fluid is not only a carrier for sand carrying but also a tool in the process of imbibition. On the basis of imbibition experiments, combined with nuclear magnetic resonance and pseudo-color processing technology, this paper clarified the dominant forces of different types of pore-throat and quantitatively characterized the contribution of different levels of pore-throat to imbibition oil recovery. The results show that gravity is the main controlling force of imbibition for reservoirs with higher permeability. Fluid replacement mainly occurs in the early period of imbibition. Macropores contribute most of the imbibition recovery, mesopores have a weak contribution, and the contribution of micropores and pinholes can be ignored. For the reservoirs with low permeability, capillary force is the main controlling force of imbibition. Fluid replacement mainly occurs in the later period of imbibition. Macropores contribute most of the imbibition recovery rate, mesopores contribute a small part of the imbibition recovery factor, and the contribution of micropores and pinholes can be ignored. This paper clarified that macropores and mesopores are the main sources of the contribution of imbibition recovery efficiency, and oil content and connectivity are key factors for the imbibition recovery efficiency.