Browsing by Author "Wishart, David S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity(2025-01-15) Banoei, Mohammad M.; Hutchison, James; Panenka, William; Wong, Andy; Wishart, David S.; Winston, Brent W.Abstract Background Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30–40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI. Methods Serum samples from 59 adult patients with sTBI and 35 age- and sex-matched orthopedic injury controls were subjected to quantitative metabolomics, including proton nuclear magnetic resonance (1H-NMR) and direct infusion/liquid chromatography-tandem mass spectrometry (DI/LC–MS/MS), to identify and quantify metabolites on days 1 and 4 post-injury. In addition, we used advanced analytical methods to discover metabo-patterns associated with sTBI diagnosis and those related to probable primary and secondary brain injury. Results Our results showed different serum metabolic profiles between sTBI and orthopedic injury (OI) controls, with significant changes in measured metabolites on day 1 and day 4 post-brain injury. The number of altered metabolites and the extent of their change were more pronounced on day 4 as compared to day 1 post-injury, suggesting an evolution of mechanisms from primary to secondary brain injury. Data showed high sensitivity and specificity in separating sTBI from OI controls for diagnosis. Energy-related metabolites such as glucose, pyruvate, lactate, mannose, and polyamine metabolism metabolites (spermine and putrescine), as well as increased acylcarnitines and sphingomyelins, occurred mainly on day 1 post-injury. Metabolites of neurotransmission, catecholamine, and excitotoxicity mechanisms such as glutamate, phenylalanine, tyrosine, and branched-chain amino acids (BCAAs) increased to a greater degree on day 4. Further, there was an association of multiple metabolites, including acylcarnitines (ACs), lysophosphatidylcholines (LysoPCs), glutamate, and phenylalanine, with injury severity at day 4, while lactate, glucose, and pyruvate correlated with injury severity on day 1. Conclusion The results demonstrate that serum metabolomics has diagnostic potential for sTBI and may reflect molecular mechanisms of primary and secondary brain injuries when comparing metabolite profiles between day 1 and day 4 post-injury. These early changes in serum metabolites may provide insight into molecular pathways or mechanisms of primary injury and ongoing secondary injuries, revealing potential therapeutic targets for sTBI. This work also highlights the need for further research and validation of sTBI metabolite biomarkers in a larger cohort.Item Open Access Spatiotemporal integration of molecular and anatomical data in virtual reality using semantic mapping(Dove Medical Press, 2009-04-01) Soh, Jung; Turinsky, Andrei L.; Trinh, Quang M.; Chang, Jasmine; Sabhaney, Ajay; Dong, Xiaoli; Gordon, Paul M. K.; Janzen, Ryan P. W.; Hau, David; Xia, Jianguo; Wishart, David S.; Sensen, Christoph W.Item Open Access Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months(2023-07-22) Banoei, Mohammad M.; Lee, Chel H.; Hutchison, James; Panenka, William; Wellington, Cheryl; Wishart, David S.; Winston, Brent W.Abstract Background Prognostication is very important to clinicians and families during the early management of severe traumatic brain injury (sTBI), however, there are no gold standard biomarkers to determine prognosis in sTBI. As has been demonstrated in several diseases, early measurement of serum metabolomic profiles can be used as sensitive and specific biomarkers to predict outcomes. Methods We prospectively enrolled 59 adults with sTBI (Glasgow coma scale, GCS ≤ 8) in a multicenter Canadian TBI (CanTBI) study. Serum samples were drawn for metabolomic profiling on the 1st and 4th days following injury. The Glasgow outcome scale extended (GOSE) was collected at 3- and 12-months post-injury. Targeted direct infusion liquid chromatography-tandem mass spectrometry (DI/LC–MS/MS) and untargeted proton nuclear magnetic resonance spectroscopy (1H-NMR) were used to profile serum metabolites. Multivariate analysis was used to determine the association between serum metabolomics and GOSE, dichotomized into favorable (GOSE 5–8) and unfavorable (GOSE 1–4), outcomes. Results Serum metabolic profiles on days 1 and 4 post-injury were highly predictive (Q2 > 0.4–0.5) and highly accurate (AUC > 0.99) to predict GOSE outcome at 3- and 12-months post-injury and mortality at 3 months. The metabolic profiles on day 4 were more predictive (Q2 > 0.55) than those measured on day 1 post-injury. Unfavorable outcomes were associated with considerable metabolite changes from day 1 to day 4 compared to favorable outcomes. Increased lysophosphatidylcholines, acylcarnitines, energy-related metabolites (glucose, lactate), aromatic amino acids, and glutamate were associated with poor outcomes and mortality. Discussion Metabolomic profiles were strongly associated with the prognosis of GOSE outcome at 3 and 12 months and mortality following sTBI in adults. The metabolic phenotypes on day 4 post-injury were more predictive and significant for predicting the sTBI outcome compared to the day 1 sample. This may reflect the larger contribution of secondary brain injury (day 4) to sTBI outcome. Patients with unfavorable outcomes demonstrated more metabolite changes from day 1 to day 4 post-injury. These findings highlighted increased concentration of neurobiomarkers such as N-acetylaspartate (NAA) and tyrosine, decreased concentrations of ketone bodies, and decreased urea cycle metabolites on day 4 presenting potential metabolites to predict the outcome. The current findings strongly support the use of serum metabolomics, that are shown to be better than clinical data, in determining prognosis in adults with sTBI in the early days post-injury. Our findings, however, require validation in a larger cohort of adults with sTBI to be used for clinical practice.