Browsing by Author "Yang, Wenzhu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Effect of commercial slow-release urea product on in vitro rumen fermentation and ruminal microbial community using RUSITEC technique(2022-05-06) Guo, Yongmei; Xiao, Ling; Jin, Long; Yan, Sumei; Niu, Dongyan; Yang, WenzhuAbstract Background The objectives of this study were to determine the effect of commercial slow-release urea (SRU) on in vitro fermentation characteristics, nutrient digestibility, gas production, microbial protein synthesis and bacterial community using a rumen simulation technique (RUSITEC). The experiment was a completely randomized design with four treatments and four replications of each treatment. Treatments were: control diet (no SRU addition), control diet plus 0.28% SRU (U28), or plus 0.56% SRU (U56), and control diet that was modified substituting a part of soybean meal equivalent to 0.35% SRU (MU35; dry matter [DM] basis). The experiment consisted of 8 d of adaptation and 7 d of data and sample collection. Rumen inoculum was obtained from three ruminally fistulated Angus cows fed the same diet to the substrate incubated. Results Digestibility of DM, organic matter (OM), crude protein (CP), fibre and starch was not affected, but daily production of gas (P < 0.07) and methane (P < 0.05) was quadratically increased with increasing SRU supplementation. The increase of SRU addition did not affect fermentation pH and total volatile fatty acid (VFA) production, whereas linearly (P < 0.01) decreased proportion of propionate, and linearly (P < 0.01) increased acetate to propionate ratio and ammonia nitrogen (N) concentration. The microbial N efficiency was also linearly (P < 0.03) improved with increasing supplementation of SRU. In comparison with control diet, the dietary substitution of SRU for part of soybean meal increased (P < 0.05) the digestibility of DM, OM and CP and decreased (P < 0.02) the total gas production. The total VFA production and acetate to propionate ratio did not differ between control and MU35, whereas the proportion of butyrate was lower (P < 0.05) and that of branched-chain VFA was greater (P < 0.05) with MU35 than control diet. Total and liquid-associated microbial N production as well as ammonia N concentration were greater (P < 0.03) with MU35 than control diet. Observed operational taxonomic units (OTUs), Shannon diversity index, and beta diversity of the microbial community did not differ among treatments. Taxonomic analysis revealed no effect of adding SRU on the relative abundance of bacteria at the phylum level, while at the genus level, the beneficial impact of SRU on relative abundance of Rikenellaceae and Prevotellaceae in feed particle-associated bacteria, and the abundance of Roseburia in liquid associate bacteria was greater (P < 0.05) with MU35. Conclusions Supplementation of a dairy cow diet with SRU showed potential of increase in ammonia N concentration and microbial protein production, and change fermentation pattern to more acetate production. Adding SRU in dairy cow diet also showed beneficial effect on improving digestibility of OM and fibre. The results suggest that SRU can partially substitute soybean meal in dairy cow diet to increase microbial protein production without impairing rumen fermentation.Item Open Access Effects of brewers’ spent grain protein hydrolysates on gas production, ruminal fermentation characteristics, microbial protein synthesis and microbial community in an artificial rumen fed a high grain diet(2021-01-04) Ran, Tao; Jin, Long; Abeynayake, Ranithri; Saleem, Atef M; Zhang, Xiumin; Niu, Dongyan; Chen, Lingyun; Yang, WenzhuAbstract Background Brewers’ spent grain (BSG) typically contains 20% – 29% crude protein (CP) with high concentrations of glutamine, proline and hydrophobic and non-polar amino acid, making it an ideal material for producing value-added products like bioactive peptides which have antioxidant properties. For this study, protein was extracted from BSG, hydrolyzed with 1% alcalase and flavourzyme, with the generated protein hydrolysates (AlcH and FlaH) showing antioxidant activities. This study evaluated the effects of AlcH and FlaH on gas production, ruminal fermentation characteristics, nutrient disappearance, microbial protein synthesis and microbial community using an artificial rumen system (RUSITEC) fed a high-grain diet. Results As compared to the control of grain only, supplementation of FlaH decreased (P < 0.01) disappearances of dry matter (DM), organic matter (OM), CP and starch, without affecting fibre disappearances; while AlcH had no effect on nutrient disappearance. Neither AlcH nor FlaH affected gas production or VFA profiles, however they increased (P < 0.01) NH3-N and decreased (P < 0.01) H2 production. Supplementation of FlaH decreased (P < 0.01) the percentage of CH4 in total gas and dissolved-CH4 (dCH4) in dissolved gas. Addition of monensin reduced (P < 0.01) disappearance of nutrients, improved fermentation efficiency and reduced CH4 and H2 emissions. Total microbial nitrogen production was decreased (P < 0.05) but the proportion of feed particle associated (FPA) bacteria was increased with FlaH and monensin supplementation. Numbers of OTUs and Shannon diversity indices of FPA microbial community were unaffected by AlcH and FlaH; whereas both indices were reduced (P < 0.05) by monensin. Taxonomic analysis revealed no effect of AlcH and FlaH on the relative abundance (RA) of bacteria at phylum level, whereas monensin reduced (P < 0.05) the RA of Firmicutes and Bacteroidetes and enhanced Proteobacteria. Supplementation of FlaH enhanced (P < 0.05) the RA of genus Prevotella, reduced Selenomonas, Shuttleworthia, Bifidobacterium and Dialister as compared to control; monensin reduced (P < 0.05) RA of genus Prevotella but enhaced Succinivibrio. Conclusions The supplementation of FlaH in high-grain diets may potentially protect CP and starch from ruminal degradation, without adversely affecting fibre degradation and VFA profiles. It also showed promising effects on reducing CH4 production by suppressing H2 production. Protein enzymatic hydrolysates from BSG using flavourzyme showed potential application to high value-added bio-products.