Feature Extraction Based on Adaptive Multiwavelets and LTSA for Rotating Machinery Fault Diagnosis

dc.contributor.authorLu, Na
dc.contributor.authorZhang, Guangtao
dc.contributor.authorXiao, Zhihuai
dc.contributor.authorMalik, Om Parkash
dc.date.accessioned2019-05-08T11:06:23Z
dc.date.available2019-05-08T11:06:23Z
dc.date.issued2019-01-22
dc.date.updated2019-05-08T11:06:23Z
dc.description.abstractFeature extraction is a key procedure in the fault diagnosis of rotating machinery. To obtain fault features with lower dimensionality and higher sensitivity, a feature extraction method based on adaptive multiwavelets transform (AMWT) and local tangent space alignment (LTSA) is proposed in this paper. AMWT is first used to obtain multiple features from the vibration signals of the machine under test to form a high-dimensional feature set. Then, in order to avoid the adverse effect of the irrelevant features in this high-dimensional feature set on the fault diagnosis result, a detection index (DI) is investigated to evaluate the sensitivity of the features and those with lower sensitivity are removed. After that, LTSA is applied for feature fusion to reduce the redundant features in the high-dimensional feature set. To validate the proposed method, performance of four feature extraction schemes based on (i) wavelet and LTSA, (ii) Geronimo, Hardin, and Massopust (GHM) multiwavelets and LTSA, (iii) AMWT and principal component analysis (PCA), and (iv) AMWT and multidimensional scaling (MDS) is compared with the proposed method. The feature extraction results by these methods are then fed into K-medoids classifier to discriminate the faults. The results show that the proposed method can improve the sensitivity of the extracted features and obtain higher fault recognition rate.
dc.description.versionPeer Reviewed
dc.identifier.citationNa Lu, Guangtao Zhang, Zhihuai Xiao, and Om Parkash Malik, “Feature Extraction Based on Adaptive Multiwavelets and LTSA for Rotating Machinery Fault Diagnosis,” Shock and Vibration, vol. 2019, Article ID 1201084, 15 pages, 2019. doi:10.1155/2019/1201084
dc.identifier.urihttp://dx.doi.org/10.1155/2019/1201084
dc.identifier.urihttp://hdl.handle.net/1880/110316
dc.identifier.urihttps://dx.doi.org/10.11575/PRISM/36492
dc.language.rfc3066en
dc.rights.holderCopyright © 2019 Na Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.titleFeature Extraction Based on Adaptive Multiwavelets and LTSA for Rotating Machinery Fault Diagnosis
dc.typeJournal Article
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SV.2019.1201084.pdf
Size:
2.68 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: