On the Effectiveness of Simhash for Detecting Near-Miss Clones in Large Scale Software Systems
Date
2011
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Abstract
Clone detection techniques essentially cluster textually, syntactically and/or semantically similar code fragments in or across software systems. For large datasets, similarity identification is costly both in terms of time and memory, and especially so when detecting near-miss clones where lines could be modified, added and/or deleted in the copied fragments. The capability and effectiveness of a clone detection tool mostly depends on the code similarity measurement technique it uses. A variety of similarity measurement approaches have been used for clone detection, including fingerprint based approaches, which have had varying degrees of success notwithstanding some limitations. In this paper, we investigate the effectiveness of simhash, a state of the art fingerprint based data similarity measurement technique for detecting both exact and near-miss clones in large scale software systems. Our experimental data show that simhash is indeed effective in identifying various types of clones in a software system despite wide variations in experimental circumstances. The approach is also suitable as a core capability for building other tools, such as tools for: incremental clone detection, code searching, and clone management.