Personalized Privacy Preservation in IoT

dc.contributor.advisorBarker, Ken
dc.contributor.authorOnu, Emmanuel
dc.contributor.committeememberPatrick Keenan, Thomas
dc.contributor.committeememberHenry, Ryan
dc.contributor.committeememberHengartner, Urs
dc.contributor.committeememberSafavi-Naini, Rei
dc.date2022-06
dc.date.accessioned2022-04-06T15:19:38Z
dc.date.available2022-04-06T15:19:38Z
dc.date.issued2022-03
dc.description.abstractThe widespread use and deployment of the Internet of Things (IoT) devices have been instrumental in automating many of our everyday tasks. Its ability to seamlessly integrate and improve the activities in our daily lives has created a wide application for it in several domains, such as smart buildings and cities. However, despite the numerous benefits associated with the integration of the IoT, there are some privacy challenges. These privacy challenges result from the ability of IoT devices to pervasively collect data about their surroundings, which could reveal sensitive information. Though the data may be collected for genuine purposes such as service personalization, previous research has identified two fundamental causes of privacy concern with data collection: 1) the lack of awareness of the presences and practices of data collecting IoT devices, and 2) the lack of control over data collected by these devices. Current efforts to address the issue of privacy awareness raise a new problem of how to deal with the cognitive burden associated with making several privacy decisions across different contexts. In addition, very little work has developed approaches for giving users control over their privacy in a smart environment. To address the privacy challenges with the IoT, it is vital to create a privacy-sensitive smart environment. A core tool required for such an environment is an intelligent personalized privacy assistant that will mediate the interactions between users and IoT devices around them. Some of the essential requirements for this privacy assistant include notification about data collecting IoT devices, user preference capturing, and privacy recommendations. In this research, we focus on some of the vital requirements for this privacy-preserving smart environment, which include IoT privacy policy modeling, user preference evaluation, user privacy preference prediction, and privacy contract negotiation. Privacy policy modeling is essential for creating privacy awareness and capturing users' preferences. We present important privacy dimensions that should be contained within an IoT privacy policy. Additionally, an understanding of people's privacy preferences is key to giving them control over their privacy and creating a more privacy-sensitive environment. We propose a workflow for analyzing three key preferences of people in an IoT environment: Notification, Control, and Permission. Furthermore, we offer a novel approach for predicting people's privacy preferences using a hybrid of Knowledge-based and Collaborative Filtering (CF), an approach commonly employed in recommender systems. Our approach is based on the premise that people share similar privacy preferences. Therefore, we predict the privacy decisions of a person by considering the privacy decisions made by people who are like them and have made privacy decisions in a similar context. The semantic similarity between two IoT contexts is established through the help of a taxonomy defined over each variable that composes the context. We then evaluate the efficiency of our approach using a dataset that contains the privacy preferences of 172 participants obtained in a simulated campus-wide IoT environment. Finally, we present a privacy contract negotiation protocol for the IoT based on the infrastructures in our privacy-preserving smart environment framework.en_US
dc.identifier.citationOnu, E. (2022). Personalized privacy preservation in IoT (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/39678
dc.identifier.urihttp://hdl.handle.net/1880/114536
dc.language.isoengen_US
dc.publisher.facultyScienceen_US
dc.publisher.institutionUniversity of Calgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.en_US
dc.subjectPrivacyen_US
dc.subjectIoTen_US
dc.subjectRecommender systemsen_US
dc.subjectPrivacy preferencesen_US
dc.subjectPrivacy policyen_US
dc.subjectPrivacy negotiationen_US
dc.subjectPrivacy preserving smart environmenten_US
dc.subjectPrivacy recommendationen_US
dc.subject.classificationComputer Scienceen_US
dc.titlePersonalized Privacy Preservation in IoTen_US
dc.typedoctoral thesisen_US
thesis.degree.disciplineComputer Scienceen_US
thesis.degree.grantorUniversity of Calgaryen_US
thesis.degree.nameDoctor of Philosophy (PhD)en_US
ucalgary.item.requestcopytrueen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ucalgary_2022_onu_emmanuel.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.62 KB
Format:
Item-specific license agreed upon to submission
Description: