Stressed volume around vascular canals explains compressive fatigue life variation of secondary osteonal bone but not plexiform bone

dc.contributor.authorLoundagin, Lindsay L.
dc.contributor.authorEdwards, William Brent
dc.date.accessioned2021-01-29T17:27:35Z
dc.date.available2021-01-29T17:27:35Z
dc.date.issued2020-01
dc.description.abstractThe fatigue life of bone illustrates a large degree of scatter that is likely related to underlying differences in composition and microarchitecture. Vascular canals act as stress concentrations, the magnitude and volume of which may depend on the size and spatial distribution of canals. The purpose of this study was to establish the relationship between vascular canal microarchitecture, stressed volume and the fatigue life of both secondary osteonal and plexiform bovine bone. Twenty-one cortical bone samples were prepared from bovine femora and tibiae and imaged using micro-computed tomography (μCT) to quantify canal diameter, canal separation and canal number. Samples were cyclically loaded in zero-compression to a peak magnitude of 95 MPa, and fatigue life was defined as the number of cycles until fracture. Finite element models were created from μCT images and used to quantify the stressed volume, i.e., the volume of bone stressed higher than a yield stress of 108 MPa. Fatigue life ranged from 162-633,437 cycles with the fatigue life of plexiform bone (n = 15) being more than 4.5 times longer than secondary bone (n = 6). The fatigue life of secondary bone was negatively correlated with canal diameter (r2 = 0.73) and canal separation (r2 = 0.56), while the fatigue life of plexiform bone was negatively correlated with canal separation (r2 = 0.41), but positively correlated with canal number (r2 = 0.36). Stressed volume was related to canal microarchitecture in secondary bone only, where canal diameters and canal separation were larger than approximately 50 μm and 200 μm, respectively. Consequently, stressed volume explained 89% of the fatigue life variance in secondary bone but was not related to the fatigue life of plexiform bone. These findings suggest that the volume of the stress concentration surrounding vascular canals is dictated by canal size and spacing and may play an important role in the fatigue failure of osteonal bone. We suspect that a larger stressed volume is more likely to encounter and facilitate the propagation of pre-existing microcracks, thereby leading to a reduction in fatigue life.en_US
dc.identifier.citationLoundagin, L. L., & Edwards, W. B. (2020). Stressed volume around vascular canals explains compressive fatigue life variation of secondary osteonal bone but not plexiform bone. "Journal of the Mechanical Behavior of Biomedical Materials", v.111, November, 2020. pp. 1-19. http://dx.doi.org/10.1016/j.jmbbm.2020.104002en_US
dc.identifier.doihttp://dx.doi.org/10.1016/j.jmbbm.2020.104002en_US
dc.identifier.issn1751-6161
dc.identifier.urihttp://hdl.handle.net/1880/113040
dc.identifier.urihttps://doi.org/10.11575/PRISM/43900
dc.publisherElsevier : Journal of the Mechanical Behavior of Biomedical Materialsen_US
dc.publisher.facultyKinesiologyen_US
dc.publisher.institutionUniversity of Calgaryen_US
dc.rightsUnless otherwise indicated, this material is protected by copyright and has been made available with authorization from the copyright owner. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.en_US
dc.titleStressed volume around vascular canals explains compressive fatigue life variation of secondary osteonal bone but not plexiform boneen_US
dc.typejournal articleen_US
ucalgary.item.requestcopytrueen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Revised_Stressed Volume Explains Fatigue Life of Secondary but not Plexiform Bone.pdf
Size:
779.49 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: