Quantification of Learning in Anatomy Using Electroencephalography: A Neuroeducational Approach

Date
2018-04-16
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Technological advances enabling presentation of content stereoscopically provide a new forum for instructional design in anatomy education that instructors are keen to explore. Thus far, studies comparing the effectiveness of learning from two-dimensional (2D) versus three-dimensional (3D) visualizations demonstrate poor generalizability and are limited by reliance on behavioural evidence alone. Successful learning is, in essence, the result of changes in brain activity related to the proper storage and retrieval of information. Neuroeducational research offers the capacity to directly explore a learner’s cognitive processing without interfering with actual cognitive processing itself and can serve as an alternative measure for testing the efficacy of different teaching methods. The aim of this research was to quantify and explore behavioural and neural correlates measured by electroencephalography (EEG) as students recognize and learn from 2D and 3D representations in anatomy. To accomplish this aim, phases of this research entailed: designing and testing reinforcement-based learning activities specifically tailored for use in a neuroeducation research paradigm; demonstrating the utility of measuring amplitude changes of event-related potential components (ERPs) measured by EEG as quantitative dependent variables of learning, retention, and transfer of knowledge; and finally, comparing neural activity of subjects learning from anatomical representations with and without stereopsis. Specifically, this work examined changes in amplitude of the N250 (a measure of visual perceptual expertise) and reward positivity (sensitive to externally provided positive feedback) ERPs. This research shows that (1) changes in neural signals indicate progression in stages of learning, (2) learning with stereoscopic models is advantageous, and (3) that a reinforcement-learning paradigm is a successful approach to teach foundational knowledge in anatomy. This research provides a foundation upon which to build a program of neuroeducational research targeted specifically at health professionals in a real-world teaching and learning environment. Importantly, this work is some of the first to provide evidence that explicitly links behavioural and neuroscientific theories of learning in an applied educational context. Further, this work demonstrates where there are synergies across these theories but also highlight the potential pitfalls of sole reliance on behavioural data alone to inform our understanding of learning.
Description
Keywords
Electroencephalography (EEG), Neuroeducation, Anatomy Education, Reinforcement Learning, stereopsis, Event Related Potentials, two dimensional, three dimensional, N250, Reward Positivity
Citation
Anderson, S. J. (2018). Quantification of Learning in Anatomy Using Electroencephalography: A Neuroeducational Approach (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/31801