Low-Noise Amplifier and Noise/Distortion Shaping Beamformer

Date
2023-09-08
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

The emergence of advanced technologies has increased the need for fast and efficient mobile communication that can facilitate transferring large amounts of data and simultaneously serve multiple users. Future wireless systems will rely on millimeter-wave frequencies, enabled by recent silicon hardware advancements. High-frequency millimeter-wave technology and low-noise receiver front ends and amplifiers are key for improved performance and energy efficiency. This thesis proposes two LNA topologies that offer wide input-power-matched bandwidths and low noise figures, eliminating the need for complex matching networks at the LNA input. These topologies use intrinsic feedback through gate-drain networks and/or the resistance of the SOI-transistor back-gate terminal to achieve the real part of the input impedance. The two LNAs are experimentally demonstrated with two 22-nm FDSOI LNAs. One LNA, matched with the assistance of the gate-drain network, exhibits a bandwidth ranging from 7.7-33.3 GHz, which is further improved to 6-38.7 GHz through the application of the back-gate-resistance method. The two LNAs have noise-figure minima of 1.8 and 1.9 dB, maximum gains of 14.7 and 15.6 dB, and maximum IP1dBs of -9.1 and -7.8 dBm while consuming 10 and 7.8 mW of power and occupying 0.04 and 0.03 mm^2 of active areas, respectively. This thesis also presents the first experimental demonstration of noise/distortion (ND) shaping beamformer. The NDs originating in the receiver itself are spatio-temporally shaped away from the beamformer region of support, thereby permitting their suppression by the beamformer. The demonstrator is a 24.3-28.7 GHz, 79.28 mW 4-port receiver for a 4-element antenna array implemented in 22-nm FDSOI CMOS. When shaping was enabled, the concept demonstrator provided average improvements to the NF and IP1dB of 1.6 dB and 2.25 dB, respectively (compared to a reference design), and achieved NF=2.6 dB and IP1dB=-18.7dBm while consuming 19.8 mW/channel.

Description
Keywords
Antenna array, Delta-sigma modulator, Multi-port receiver, Spatio-temporal noise shaping, Low-noise amplifier, Wideband LNA, FDSOI CMOS, Induced front- /back gate noise
Citation
Radpour, M. (2023). Low-noise amplifier and noise/distortion shaping beamformer (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.