Investigating the Heat Shock Protein 110 as a Modifier Of Prion Infection In Vitro and In Vivo

dc.contributor.advisorSchätzl, Hermann M
dc.contributor.authorMarrero Winkens, Cristóbal
dc.contributor.committeememberTrang, Tuan
dc.contributor.committeememberBraun, Janice E. A.
dc.contributor.committeememberOusman, Shalina S.
dc.contributor.committeememberNussbaum-Krammer, Carmen
dc.date2022-02
dc.date.accessioned2021-11-22T19:23:52Z
dc.date.available2021-11-22T19:23:52Z
dc.date.issued2021-11-22
dc.description.abstractPrion diseases are fatal transmissible neurodegenerative disorders affecting humans and wild or domesticated animals. Molecularly, they are caused by a misfolding of the cellular prion protein (PrPC) into a highly pathogenic isoform (PrPSc). Over time, PrPSc aggregates into fibrils which are fragmented to recruit and convert further PrPC. Even though this process is essential to the replication of PrPSc, the molecular players involved remain unknown. Based on reports showing that the molecular chaperone Hsp110 forms part of a mammalian disaggregation machinery, we hypothesize that Hsp110 is critical for the fragmentation of PrPSc in prion propagation. To test this, Hsp110 levels were manipulated in prion-infected cultured cells: Transient knock-down was found to reduce PrPSc levels in neuronal and non-neuronal cells, while transient overexpression increased PrPSc in a dose-dependent manner in neuronal cells. Knockout of Hsp110 by CRISPR/Cas9 reduced the susceptibility of neuronal cells to prion infection. Overall, the effects of Hsp110 manipulation in cultured cells are consistent with an involvement of Hsp110 in prion propagation. Next, mice overexpressing Hsp110 (TgApg-1 mice) were inoculated with the 22L and Me7 prion strains. Compared to WT mice, TgApg-1 mice showed significantly prolonged survival after Me7- but not 22L-inoculation. To test whether this prolongation of survival occurred due to altered PrPSc propagation, the biochemical features of PrPSc were examined in terminally-diseased animals. No difference was found between PrPSc of WT or TgApg-1 mice, suggesting that Hsp110 overexpression may have been protective independently of PrPSc. Finally, the effect of compounds broadly inducing the expression of heat shock proteins was examined. WT FVB mice inoculated with RML or Me7 prions were treated with either celastrol, geranylgeranylacetone or vehicle. No difference in survival time was found between the groups, despite evidence of heat-shock response induction in drug-treated animals. These results suggest that broad heat-shock induction is not protective in prion infection. Overall, our in vitro studies are consistent with a role of Hsp110 in PrPSc fragmentation, but our in vivo work is inconclusive in this regard. We, therefore, propose further research aimed at exploring prion fragmentation and the role of Hsp110 in prion infection.en_US
dc.identifier.citationMarrero Winkens, C. (2021). Investigating the Heat Shock Protein 110 as a modifier of prion infection in vitro and in vivo (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/39393
dc.identifier.urihttp://hdl.handle.net/1880/114132
dc.language.isoengen_US
dc.publisher.facultyCumming School of Medicineen_US
dc.publisher.institutionUniversity of Calgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.en_US
dc.subjectPrion diseaseen_US
dc.subjectNeurodegenerationen_US
dc.subjectChaperonesen_US
dc.subjectHeat shock proteinsen_US
dc.subjectProtein misfoldingen_US
dc.subject.classificationBiologyen_US
dc.subject.classificationBiology--Cellen_US
dc.subject.classificationNeuroscienceen_US
dc.subject.classificationPhysics--Molecularen_US
dc.titleInvestigating the Heat Shock Protein 110 as a Modifier Of Prion Infection In Vitro and In Vivoen_US
dc.typedoctoral thesisen_US
thesis.degree.disciplineMedicine – Neuroscienceen_US
thesis.degree.grantorUniversity of Calgaryen_US
thesis.degree.nameDoctor of Philosophy (PhD)en_US
ucalgary.item.requestcopytrueen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ucalgary_2021_marrerowinkens_cristobal.pdf
Size:
5.35 MB
Format:
Adobe Portable Document Format
Description:
Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.62 KB
Format:
Item-specific license agreed upon to submission
Description: