Optimal Modeling and Filtering of Stochastic Time Series for Geoscience Applications

dc.contributor.authorBlais, J. A. Rod
dc.date.accessioned2018-09-27T11:40:38Z
dc.date.available2018-09-27T11:40:38Z
dc.date.issued2013-05-16
dc.date.updated2018-09-27T11:40:38Z
dc.description.abstractSequences of observations or measurements are often modeled as realizations of stochastic processes with some stationary properties in the first and second moments. However in practice, the noise biases and variances are likely to be different for different epochs in time or regions in space, and hence such stationarity assumptions are often questionable. In the case of strict stationarity with equally spaced data, the Wiener-Hopf equations can readily be solved with fast Fourier transforms (FFTs) with optimal computational efficiency. In more general contexts, covariance matrices can also be diagonalized using the Karhunen-Loève transforms (KLTs), or more generally using empirical orthogonal and biorthogonal expansions, which are unfortunately much more demanding in terms of computational efforts. In cases with increment stationarity, the mathematical modeling can be modified and generalized covariances can be used with some computational advantages. The general nonlinear solution methodology is also briefly overviewed with the practical limitations. These different formulations are discussed with special emphasis on the spectral properties of covariance matrices and illustrated with some numerical examples. General recommendations are included for practical geoscience applications.
dc.description.versionPeer Reviewed
dc.identifier.citationJ. A. Rod Blais, “Optimal Modeling and Filtering of Stochastic Time Series for Geoscience Applications,” Mathematical Problems in Engineering, vol. 2013, Article ID 895061, 8 pages, 2013. doi:10.1155/2013/895061
dc.identifier.doihttps://doi.org/10.1155/2013/895061
dc.identifier.urihttp://hdl.handle.net/1880/108259
dc.identifier.urihttps://doi.org/10.11575/PRISM/45131
dc.language.rfc3066en
dc.rights.holderCopyright © 2013 J. A. Rod Blais. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.titleOptimal Modeling and Filtering of Stochastic Time Series for Geoscience Applications
dc.typeJournal Article
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MPE.2013.895061.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: