Detecting and Correcting for Human Obstacles in BLE Trilateration Using Artificial Intelligence
Date
2020-02-29
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
One of the popular candidates in wireless technology for indoor positioning is Bluetooth Low Energy (BLE). However, this technology faces challenges related to Received Signal Strength Indicator (RSSI) fluctuations due to the behavior of the different advertising channels and the effect of human body shadowing among other effects. In order to mitigate these effects, the paper proposes and implements a dynamic Artificial Intelligence (AI) model that uses the three different BLE advertising channels to detect human body shadowing and compensate the RSSI values accordingly. An experiment in an indoor office environment is conducted. 70% of the observations are randomly selected and used for training and the remaining 30% are used to evaluate the algorithm. The results show that the AI model can properly detect and significantly compensate RSSI values for a dynamic blockage caused by a human body. This can significantly improve the RSSI-based ranges and the corresponding positioning accuracies.
Description
Keywords
Trilateration; BLE; artificial intelligence; localization; obstacle
Citation
Naghdi, S., & O'Keefe, K. P. G. (2020). Detecting and Correcting for Human Obstacles in BLE Trilateration Using Artificial Intelligence. "Sensors". 2020(20) 1350. doi: 10.3390/s20051350