The EGF Receptor and HER2 Participate in TNF-α-Dependent MAPK Activation and IL-8 Secretion in Intestinal Epithelial Cells

Abstract
TNF-alpha activates multiple mitogen-activated protein kinase (MAPK) cascades in intestinal epithelial cells (IECs) leading to the secretion of interleukin 8 (IL-8), a neutrophil chemoattractant and an angiogenic factor with tumor promoting properties. As the epidermal growth factor receptor (EGFR) is a known transducer of proliferative signals and a potent activator of MAPKs, we hypothesized that the EGFR participates in TNF-dependent MAPK activation and IL-8 secretion by intestinal epithelial cells (IECs). We show that the EGFR is tyrosine-phosphorylated following treatment of IECs (HT-29 and IEC-6) with TNF-alpha. This requires EGFR autophosphorylation as it was blocked by the EGFR kinase inhibitor AG1478. Autophosphorylation was also inhibited by both a Src-kinase inhibitor and the metalloproteinase inhibitor batimastat. TNF treatment of IECs resulted in the accumulation of soluble TGF-alpha; treatment of IECs with batimastat suppressed TGF-alpha release and immunoneutralization of TGF-alpha resulted in decreased EGFR and ERK phosphorylations. TNF-alpha treatment of IECs resulted in an association between EGFR and HER2 and inhibition of HER2 using a specific inhibitor AG879 in combination with AG1478-suppressed TNF-alpha-dependent ERK phosphorylation and IL-8 release. Downregulation of HER2 via siRNA resulted in a significant decrease in ERK phosphorylation and a 50% reduction in IL-8 secretion.
Description
Keywords
Citation
Humberto B. Jijon, Andre Buret, Christina L. Hirota, Morley D. Hollenberg, and Paul L. Beck, “The EGF Receptor and HER2 Participate in TNF-α-Dependent MAPK Activation and IL-8 Secretion in Intestinal Epithelial Cells,” Mediators of Inflammation, vol. 2012, Article ID 207398, 12 pages, 2012. doi:10.1155/2012/207398